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Abstract

The field of dynamical systems and especially the study of chaotic systems has been

considered as one of the important breakthroughs in science in this century. While

this area is still relatively young, there is no question that it is becoming more and

more important in a variety of scientific disciplines. Thus, this work starts with an

historical overview about nonlinear dynamics and chaotic

introduces the motivation for the results presented in the

The first part of the present thesis (Chapter 2 and

behavior (Chapter 1) that

subsequent chapters.

Chapter 3) is devoted to

the phenomenon of synchronization among coupled chaotic systems. This topic

results very interesting since it could appear to be almost in contradiction with the

definition of chaos which includes the rapid decorrelation of nearby orbits due to the

instabilities throughout the phase space. In particular, Chapter 2 is devoted to show

different categories of connections among identical chaotic systems that can lead to

synchronized motions of the oscillators, and in Chapter 3 we analyze the stability of

the global synchronized state in open linear arrays or in rings of chaotic oscillators. We

will also pay attention to some stable spatio-temporal structures (periodic rotating

waves and chaotic rotating waves) that can arise when a instability appears in the

global synchronized state of a ring of chaotic oscillators. The interaction between

these structures when two rings are interconnected is investigated as well. Numerical

simulations have been carried out with assemblies of Lorenz oscillators and Chua’s

oscillators, whereas experiments have been carried out in a board of Chua’s oscillators.

The second part of the thesis (Chapter 4 and Chapter 5) deals with possible

applications of chaotic systems to the communications field. In Chapter 4 we show

some advantageous features that chaotic behavior can incorporate to conventional

digital communication systems and some different schemes that have already been

proposed. In Chapter 5 we introduce a simple control technique to encode binary

sequences of information in a chaotic Lorenz waveform as well as two different

methods to reconstruct damaged parts of this chaotic waveform when it is transmitted

through a communication channel. Both methods exploit the redundancy provided

V



by the determinism of chaotic signals. Finally, it is shown how these reconstruction

methods allow not only to reconstruct damaged parts of the transmitted signal but

they can also be used to increase the rate of the information transmission by means

of a time division multiplexing scheme.

Finally, in Chapter 6, conclusions and outlooks of this work are presented.
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Chapter 1

Introduction.

Isaac Newton brought to the world the idea of modeling the motion of physical

systems with equations. It was necessary to invent calculus along the way, since

fundamental equations of motion involve velocities and accelerations, which are

derivatives of position. His greatest single success was his discovery that the motion of

the planets and moons of the solar system resulted from a single fundamental source:

the gravitational attraction of the bodies. The circular, elliptical, and parabolic

orbits of astronomy were no longer fundamental determinants of motion, but

approximations to laws specified with differential equations. Subsequent generations

of scientists extended the method of using differential equations to describe how

physical systems evolve. Such sets of equations are called dynamical systems. The

theory of dynamical systems describes phenomena that are common to physical and

biological systems throughout science. It has benefited greatly from the collisison

of ideas from mathematics and these sciences. The goal of scientists and applied

mathematicians is to find nature’s unifying ideas or laws and to fashion a language

to describe these ideas.

A very active research field in modern physics is that of nonlinear dynamics and,

more recently, the subfield of chaotic dynamics. Although chaotic dynamics had been

known to exist for a long time, its importance for a broad variety of applications began

to be widely appreciated only within the last decade or so. Concurrently, there

has been enormous interest both within the mathematical community and among

engineers and scientists. The field continues to develop rapidly in many directions,

and its implications continue to grow.
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Chaotic dynamics may be said to have started at the turn of the century with the

work of the French mathematician Henri Poincare (1892),  who discovered that certain

mechanical systems whose time evolution was governed by Hamilton’s equations could

display chaotic motion. Poincare’s motivation was partly provided by the problem of

the orbits of three celestial bodies experiencing mutual gravitational attraction (e.g.,

a star and two planets). By considering the behavior of orbits arising from sets of

initial points (rather than focusing on individual orbits), Poincare was able to show

that very complicated (now called chaotic) orbits were possible.

Poincare’s techniques were applicable to a wide variety of physical systems.

Important further contributions were made by Birkhoff, Cartwright and Littlewood,

Levinson, Kolmogorov and his students, among others. Some of them are: the use

of the discrete dynamics as a means of understanding the more difficult dynamics

arising from differential equations carried out by Birkhoff in the 1920s; curious

attractors, first discovered in the solutions of physical differential equations by

Cartwright and Littlewood and by Levinson in the 1940s; the subsequent discovery

of numerous physical strange attractors; the complementary situation of persisting

oscillatory, non-chaotic dynamics (Fermi-Pasta-Ulam and Kolmogorov, in the 1950s)

and its relationship to chaos in conservative system (the Kolmogorov-Arnold-Moser

theorem), etc.. However, at first, knowledge of the area of nonlinear dynamics

remained largely confined to the mathematical community, and it had to wait until

the 1950s when these ideas started to be applicated to a wide variety of disciplines,

such as physics, chemistry, biology, neurology, astronomy, geophysics, meteorology,

economics,.  

One important year was 1963, when the meteorologist E.N. Lorenz found that

even a simple set of three coupled, first order, nonlinear differential equations can

lead to completely chaotic trajectories. Lorenz’s paper, the general importance of

which is recognized today, was also not widely appreciated until many years after

its publication. He discovered one of the first examples of deterministic chaos in

dissipative systems. Starting in the mid-1970s, and stimulated by the availability of

digital computers, this situation rapidly changed, as the broad impact and occurrence

of chaos in the sciences and engineering began to be widely recognized. It has

been demonstrated that chaos is relevant to problems in fields as diverse as ecology,

chemistry, fluid mechanics, solid state devices, biology, and celestial mechanics. Some

important works were carried out by the physicist Feigenbaum, who have rekindled



interest in low dimensional discrete dynamical systems, and by Ruelle, Takens and

Newhouse, who have played an important role in the study of deterministic chaos

in hydrodynamic systems, among others. It was recognized that chaos is not an

exclusive type of behavior in nonlinear systems. The motion appears to be chaotic as

soon as it is locally unstable and globally bounded. In many cases, motions of such

kind correspond better to the oscillatory behavior of real life systems.

More recently, the study of chaotic dynamics has entered a new phase. In

addition to the original pursuits of demonstrating chaos in a wide range of situations,

and studying the properties of chaotic dynamics, many researchers are interested

in utilizing the basic knowledge of the theory of chaos either to analyze chaotic

experimental time series data [l, 2], or else to use the presence of chaos to achieve some

practical goal. Thus, the interest in studying chaotic phenomena was recently revived,

when evidence was found that chaotic models describe the financial time series better

than the conventional random walk models [183]. Moreover, chaotic models were

reported to be useful for financial time series prediction and for trading, along with

other fashionable techniques such as neural networks and genetic algorithms.

At the beginning of the present decade (1990) two different discoveries have

changed the point of view of the field of nonlinear dynamics, in particular the point of

view of the chaotic behavior, leading to a new perspective. The first work is related

to the possibility of controlling chaos, as shown by Ott, Grebogi and Yorke [166]

at Maryland, while the second one regards the practical demonstration that certain

chaotic systems can synchronize,  by Pecora and Carroll [174,  175] at the Office of

Naval Research. Both possibilities would apparently defy common sense regarding

what is known for chaotic systems, and this is related also to the fact that the

words control and synchronization  appear to be in contradiction with the word chaos.

Controlling a system implies the imposition of some desired behavior on it, while

chaotic systems are characterized by their unpredictable behavior, as determined by

their sensitive dependence on the initial conditions. This latter property also implies

that two identical systems would quickly uncorrelate even when purposely started

with identical initial conditions, at least from a practical point of view.

The paper by Ott et al. [166] puts forth a strategy for controlling systems

whose uncontrolled orbits are chaotic, and points out that this can be done applying

small perturbations to the system. The basic idea is to determine some of the low



period unstable periodic orbits or steady states embedded in the attractor, and then

use feedback to stabilize one of these, chosen as to yield improved performance.

Subsequent research on control of chaos by means of the stabilization of unstable

orbits has been carried out [57, 213, 100, 64, 59, 190, 230, 66, 184]. One of the earliest

was the work by Ditto et al. [57] on a gravitationally buckling magnetoelastic ribbon.

This was rapidly followed by Singer et al. [213] on thermally driven fluid convection,

Hunt [l00] on an electrical circuit, Garfinkel et al. [64] on chaotically oscillating

rabbit cardiac tissue, Gills et al. [66]] on a laser system and Petrov et al. [184] on the

Belousov-Zhabotinsky chemical reaction. It is also remarkable the work by Dressler

and Nitsche [59] who discuss how this strategy of stabilizing unstable orbits can be

implemented using delay coordinate embedding. A more complete treatment of the

theory, including delay coordinates, is given in the paper by Romeiras et al. [190],

which is based on the pole placement technique,  well known in control theory. Another

way of controlling chaos was proposed by Hayes et al. [88]. The idea is to control the

dynamics of a chaotic oscillator so that it follows a given sequence in some associated

symbolic dynamics. Since this sequence can be controlled, it can be used in the field

of communications to transmit information.

The paper by Pecora and Carroll [174] considers how identical, or almost identical

chaotic systems can be synchronized  by a chaotic reference signal so that the two

systems follow the same chaotic orbit. R. He and P.G. Vaidya [93] showed how this

synchronization  can be understood in many representative cases by the existence of

a global Lyapunov function of the difference signals.

One possible use of the ability to synchronize  chaotic systems is in secure

communications [log, 32, 45, 46, 131]. The idea is to mask the information-bearing

signal to be transmitted with a chaotic signal that exhibits broadband features.

This is an alternative to more classical noise-masking methods, in which one uses

a purely stochastic signal to mask the information to be transmitted. One should

note, however, that some recent studies [210,  179] have shown that more sophisticated

masking techniques should be used because otherwise the transmitted signal would

be easily unmasked by using the deterministic properties of a chaotic signal.



Chapter 2

Synchronization of Coupled
Chaotic Oscillators.

2.1 Synchronization of Coupled Oscillators.

Systems of discretely-coupled cells with transference of mass, energy or electric

charge often serve as standard models for investigating the phenomena occurring in

the transformation and transport processes in living cells, tissues, neuron networks,

physiological systems and ecosystems, as well as in all forms of chemical, biochemical

and biological reactors and combustion systems [83, 67, 156, 232, 233, 245, 231, 232,

123, 148, 116,49, 150]. An important and early work was carried out by Winfree  [231],

who discovered that a class of coupled oscillators with different internal frequencies

suddenly synchronized to a common frequency when the coupling between oscillators

exceeded a critical value. Winfree  and others suggested that these models could give

insight into the behavior of coupled biological rhythms, such as swarms of fireflies that

flash in synchrony, synchronous firing of cardiac pacemaker cells, groups of women

whose menstrual cycles become synchronized, etc. [232].

Coupled dynamical systems are typically synthesized from simpler, low-

dimensional systems to form new and more complex organizations. This is often

done with the intent of realistically modeling spatially extended systems, with the

belief that dominant features of the underlying constituents will be retained. From an

application point of view this building up approach can also be used to create a novel
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system whose behavior is more flexible or richer than that of the constituents, but

whose analysis and/or control remains tractable. These and other motivations have

led to numerous studies of coupled systems in a wide range of disciplines. Even an

abbreviated list of coupled oscillator references is prohibitively long. Representative

works are in optical [234, 24, 165, 212], chemical [122, 16, 242], condensed matter

[61, 220], biological [232, 117, 60, 150, 42], neural network [216, 120, 132, 160], and

other [9, 162, 69, 33] systems.

Synchronization  is a universal phenomenon that can occur when two or more

nonlinear oscillators are coupled. The ability of nonlinear oscillators to synchronize

with each other is a basis for the explanation of many processes of nature and,

therefore, synchronization plays a significant role in science. Numerous applications

in mechanics, electronics, communication, measurements, and in many other fields

have shown that synchronization is extremely important in engineering. For example,

in the design of microwave systems the power of many devices may be combined

through synchronization so that power increases quadratically with the number of

oscillators. In this case, the oscillators must have not only the same frequency, but

also a small phase difference. Similar needs are found in electrical power generators,

coupled lasers, Josephson junction arrays, etc. Another important application

of synchronization is related to a network of clocks distributed geographically in

different locations, where it is necessary to have the same time for all clocks. For

these applications, synchronization is usually achieved by using phase-locked loops

[206,105].  These have become so widely used that it is rare to find a piece of electronic

equipment without them. In addition to the specific synchronization applications

mentioned above, more examples are found in computers, radar, television sets,

communication networks, instruments for signal tracking from satellites, etc.

Usually, synchronization is understood as the ability of coupled self-excited

oscillators with different frequencies to switch their behavior from the regime of

independent oscillations characterized by beats to the regime of cooperative stable

periodic oscillations, as the strength of coupling is increased. As a result of

synchronization, the oscillators change their frequencies in such a way that these

frequencies become identical or related via a rational factor. Depending upon the

properties of oscillators considered, there are different explanations as to why these

oscillators synchronize. For instance, one can distinguish between the mechanism for

synchronization of relaxation oscillators that produce sharp pulses and the mechanism



for synchronization of oscillators that generate smooth waveforms. However, one

should keep in mind that the separation of these mechanisms is not precise, and they

can be considered as limiting cases of a general mechanism, where resonances and

actions of dissipative forces are very important.

2.2 Synchronization of Coupled Chaotic Systems.

Chaotic phenomena arise ubiquitously in natural systems and in man-made devices.

Past work has focussed mainly on the discovery and characterization  of chaotic

behavior ocurring in situations where there is no goal-oriented intervention, i.e.,

control. Recently, ideas and techniques have been proposed to utilize the rich

properties of chaos to achieve certain objectives. For instance, the broad-band nature

of chaotic signals makes them tempting for their use in secure communications or

spread-spectrum applications. Futhermore, the fact that such signals emanate from a

deterministic dynamical system lends to the hope that one will also be able to control

them sufficiently for many uses. Taken as isolated systems, oscillators exhibiying a

chaotic behavior chaotic appear to offer many impediments to anyone to put them to

use. The willingness to make chaotic systems part of a more complex (and interesting)

system opens up a new direction for the applications of chaos. These applications

are best viewed as synthesis of dynamical systems.

The possibility of two or more chaotic systems oscillating in a coherent and

synchronized  way is not an obvious one. One of the main features associated with the

definition of chaotic behavior is the sensitive dependence on initial conditions. Then

one may conclude that synchronization is not feasible in chaotic systems because it

is not possible in real systems to reproduce exactly identical initial conditions. Thus,

even an infinitesimal deviation in any one of the parameters or initial conditions will

eventually result in the divergence of nearby starting orbits. In this context, the

fact of achieving synchronization of chaotic systems through suitable coupling can be

considered as a fascinating concept.

Over the last decade, a number of different types of synchronization have

appeared: identical synchronization [174],  phase synchronization [124,  193], lag

synchronization [194],  and generalized synchronization [200, 201], to mention only

a few. This is in addition to the classic examples of synchronization in periodic



systems [20]. Many of these have been experimentally observed in a single system

[223]. Synchronization is often categorized  on the basis of whether the coupling

mechanism is uni-directional or bi-directional. Stable synchronization with uni-

directional coupling has been called synchronization by an external force (for

frequency synchronization) and master-slave synchronization (Pecora and Carroll

[174]). It has recently been shown that, if the

then there is no essential difference between

synchronization [ 103].

synchronized systems are identical

uni-directional and bi-directional

The phenomenon of synchronization of identical or nearly identical chaotic
systems coupled in an array has recently received a great deal of attention

[119, 104, 94, 234, 182, 14, 157, 96, 237, 97, 65, 176, 225, 128, 112, 238, 47, 142, 145]

although the behavior was shown to exist some years ago, both theoretically and

experimentally [63, 239, 6, 229, 234, 198, 196, 174]. Chaotic synchronization of

two continuous-time dynamical systems was experimentally discovered in 1985 [5]

at both identical and slightly different system parameters. After a rather general

definition of synchronized chaos was given by Afraimovich [6], which includes the

case of nonidentical oscillations, a number of analytical, experimental and numerical

results about stability of synchronized chaotic oscillations and self-oscillations were

obtained for coupled nonlinear oscillators with periodic forcing [6, 228], Lorenz’s

equations [227],  electronic circuits [ll, 229],. . . .

The two seminal papers, Controlling Chaos by Ott, Grebogi and Yorke (OGY)

[166] and Synchronization in Chaotic Systems by Pecora and Carroll [174],  published

in the year 1990 opened up a wide range of applications outside the traditional

scope of chaos and nonlinear dynamics research. Both papers immediately received

a great deal of attention, and led to the establishment of two active areas of

research [209, 58, 35, 101, 195, 169]: synchronization and control of chaotic systems.

Synchronization is in many ways related to control [l]. The two ideas of synchronizing

and controlling chaotic motions have common roots in the notion of driving a

nonlinear system to restrict its motion onto a subspace  of the total phase space of

the dynamical system. In each case one selects parameter regimes or external forcing

to achieve this collapse of the full space to a selected subspace. In controlling chaos

we seek to move the free running system into more regular or more chaotic motions

by adding dynamics to the original system in the form of time varying parameters or

external driving of other forms. In synchronization we seek subspaces of the coupled



system space in which a special kind of motion which relates the coupled system takes

place. It was known from the start that the techniques of chaos control have their

origins in control theory. On the other hand, synchronization of chaos has evolved

somewhat in its own right. However, recent progress [237,  115, 19] casts the problem

of chaos synchronization in the framework of nonlinear control theory. This unifies

the study of chaos control and chaos synchronization under the same rubric.

In the analysis of synchronized chaotic motions one has to distinguish between

the instability for perturbations within the synchronization manifold [187] and

transverse to it. The regime of identical chaotic oscillations is stable when the

synchronized trajectories are stable for the perturbations in the transverse direction

to this manifold [187]. The two most frequently used criteria for stability of

synchronized chaotic motions are the Lyapunov function criterion [227, 197, 237, 7]

and the analysis of transversal (conditional) Lyapunov exponents calculated from the

linearized equations for the perturbations transversal to the synchronization manifold

[63, 174, 15, 94]. The criterion based on the analysis of Lyapunov functions for the

vector field of perturbations transversal to the manifold enables one, in some cases, to

prove that all trajectories in the phase space of the coupled systems are attracted by

the manifold of synchronized motions. Despite the fact that this criterion guarantees

the onset of synchronization, it is not a general method since there is no procedure

for constructing the Lyapunov function for an arbitrary system. In many practical

cases, Lyapunov functions cannot be found, even for systems that possess a stable

manifold of synchronized motions for a broad range of parameters of coupled systems,

and of the coupling itself.

In contrast with Lyapunov functions, the analysis of transversal Lyapunov

exponents is quite straightforward and can be easily employed, even for rather

complicated systems. However, it has been pointed out [185,  14, 168, 26, 96] that,

in practice, the negativeness of Lyapunov exponents does not always guarantee that

there are not unstable invariant sets in the synchronous state [14] or areas on the

attractor that are locally unstable [65, 176, 202], both of which can cause attractor

bubbling and bursting of the system away from synchronization when there is noise

or parameter mismatch. In spite of this fact, it is noticeable that the transversal

Lyapunov exponents criterion may help to find a master stability function [178],

which, as it has been recently proved, solves the problem of synchronous stability for

any linear coupling of oscillators.



There exist several possibilities for linking chaotic systems so that they become

synchronized. Thus, one can connect them by using linear diffusive coupling, as

initially suggested by F’ujisaka and Yamada [63],, or by driving coupling, introduced

by Pecora and Carroll [174]. These two possibilities will be described in the next

subsections.

2.2.1 Synchronizing Chaotic Systems by Linear Diffusive
Coupling.

The linear diffusive coupling, suggested by Fujisaka and Yamada [63], was

implemented in practice by a number of authors, using both mutual and unidirectional

coupling [197,  182, 199, 189, 96]. In this case it is guaranteed that if one couples

all the variables there is some threshold value for the coupling such that one gets

synchronized behavior [94] (although the practical determination of this threshold

may be subtle [96]).. An important work in this context of linear diffusive coupling

was carried out by Rul’kov et al. [197],  who have experimentally studied the evolution

of two coupled electronic circuits connected by means of a resistor R. This study was

carried out not only with identical chaotic oscillators, but also when small differences

between the self-oscillators exist. Synchronization  can be obtained in both cases.

Rul’kov et al. have demonstrated, by using dissipative coupled nonlinear circuits

with individual chaotic behaviors, that the local and global stability boundaries of

the synchronization regime of chaos can be located at different coupling parameters

values. This is connected with the bifurcations of some attractors in the global

regions of the phase space. Note that the introduction of a coupling between chaotic

self-oscillators can lead not only to more complex behavior or to the synchronization

of the chaotic oscillations, but also to the appearance of simple types of attractors

like, for example, limit cycles. This result bears similarity with the case of coupled

cell cultures of Dictyostelium  amoebae suspensions [84]. The experiments showed

the ocurrence  of rather regular oscillations where different possible chaotic cells were

coupled, providing thus a fraction of cells that behave in a periodic manner. The

cells shared a common intermediate chemical which is like the resistor in Rul’kov’s

experiment.

Chaotic synchronization in one dimensional arrays of identical and slightly

different chaotic circuits diffusively coupled has also been studied [182, 243, 50]. It



has been found that the role of the coupling is always to stabilize the system, and

then synchronize it. For example, computer simulations and experimental results of

an array of Chua’s circuits has been carried out [182],  considering arrays of identical

and slightly different oscillators. In the first case, the oscillators synchronize and

synchronize in phase, i.e, each one repeats exactly the same behavior as the rest of

them. When the oscillators are not identical, they can also synchronize but not in

phase with each other. The last situation is shown to form structures in the phase

space of the dynamical variables.

2.2.2 Synchronizing Chaotic Systems by Driving.

If one gives some thought to communications, especially with signals whose future

behavior is difficult or impossible to predict over the course of the transmission, one

realizes that some sort of synchronization between sender and receiver would be very

useful. Synchronizing chaotic systems seems, at first, quite problematic. Identical

chaotic systems will diverge in their behavior if each one is started on a slightly

different phase space point, which is surely to be the case in any real system. It is,

however, possible to set up two remote chaotic systems with identical components and

synchronize them by transmitting the corresponding signals from one to the other. In

addition, transmission need only be one way; that is, one system is driving the other,

but not vice versa. In 1990 Pecora and Carroll discovered a way to accomplish this feat

that is relatively straightforward and deceptively simple [174].  They take a complete

chaotic system and choose a subsystem within it. Then, they make a replica of this

subsystem. The original system is called the drive and the duplicated subsystem is

called the response. Figure 2.1 depicts an schematic of the drive-response system

proposed by Pecora and Carroll.

The response is just like the drive except that it is missing one or more variables.

The missing variables are sent from the drive to the response, inputting the variable

wherever it is needed in the response system. If a stable response subsystem has been

chosen, then the response’s dynamic variables will converge to their counterparts in

the drive and will remain synchronized  with them (amplitude and phase always equal)

as long as the drive continues to be supplied to the response (see Fig. 2.2). The key

idea is to have a stable subsystem. Stability here is in the sense of Lyapunov [133].

A measure of the stability of the subsystem is given by the conditional Lyapunov



drive response

Figure 2.1: Schematic for creating a synchronizing chaotic system proposed by Pecora and
Carroll.

time

Figure 2.2: Convergence of the response to the drive.

exponents of that system [175].  These are not usually a subset of the usual Lyapunov

exponents of the full system (the drive) and must be calculated separately.

It is possible to see mathematically where these conditional exponents come

from. We can write the drive system of ordinary differential equations (ODE’s)

as jc = dx/dt = F(x). The system can be broken into two subsystems by a partition

of the original vector x into two subvectors x = (v, w), where x is n-dimenional, w is

m-dimensional, and v is n - m dimensional. Then, the original equations of motion

are

+ =  g(v,w)
ti =  h ( v , w ) (2.1)



where F = (g, h). An auxiliary equation is added for the duplicated subsystem

if = h(v, w’) . (2.2)

The variables of the response w’ will converge to the drive values w if the difference

Aw = w’- w + 0 as the entire system (drive + response) evolves. Substracting  Eq.

(2.1) from Eq. (2.2) we get an equation for the dynamics of Aw (neglecting higher

order terms in Aw)
Aw = Dh(v, w)Aw (2.3)

where Dh is the matrix of derivatives of h with respect to w. Equation (2.3) is a basic

equation for much of the discussion on synchronizing  chaotic systems. The conditions

on stability are simple to understand using it (although they are not trivial). For

example, if Dh is a constant over the attractor, then the solution to Eq. (2.3) is well

known to be Aw(t)  = ezp(Dht)Aw(O). Then, depending on the eigenvalues of Dh
(assuming Dh is diagonalizable) Aw will either converge to zero (synchronization)

or not (asynchronous situation).

A more robust and rigorous definition can be given in terms of the Lyapunov

exponents. Namely, when the Lyapunov exponents for Eq. (2.3) are all negative,

the systems will synchronize. Note that the full system for jc has a set of Lyapunov

exponents, but the exponents for Eq. (2.3) are not usually a subset of the Lyapunov

exponents of the full system. The exponents for Eq. (2.3) are called conditional

Lyapunov exponents, because they depend on the drive v. Synchronization  can

occur only when the subsystem’s Lyapunov exponents are negative. The criteria of

negativity of Lyapunov exponents is a local result and does not always mean that the

response will synchronize with the drive when started from any phase space point.

Cascading Synchronized  Systems.

Once one gets used to the idea of breaking chaotic systems up and having one

driven by other, different configurations appear possible and present some interesting

prospects. One of these is the idea of cascading synchronized  drive/response systems

[32, 31]. Figure 2.3 shows an schematical setup for a three-dimensional dynamical

system (it generalizes to any dimension) using the Pecora-Carroll method. Another

response is simply added in cascaded form to the original setup of Pecora-Carroll



drive/response. Note that this requires that the drive system have two or more

stable subsystems. In this case all the signals in the response systems would actually

reproduce the signals in the original drive system, including the transmitted drive.

Drive Response 1 Response 2

Signal

1
parameters

Difference all
equal !parameters different

O---
time

Figure 2.3: Cascading synchronized  chaotic systems based on Pecora-Carroll method.

If all the parameters of the drive and cascaded responses are the same, then the

reproduced signals will match their counterparts back in the drive. If the parameters

in the drive or response are varied the signals in the response will not match

those in the drive. These facts about signal matching suggest several possibilities

for communications. One is to modulate the drive signal and compare it to the

reproduction coming out the back end of the cascaded responses. This would allow

the modulation to be detected. Another, more elegant method would be to modulate

a parameter in the drive and detect it by noticing that the difference between the

incoming and reproduced drive signals varies from null. One can even set up a

mechanism to vary the appropiate parameter in the responses to match the drive



values as they change by keeping the drive-reproduced-drive difference to zero. Carroll

[32,  31] has shown how to do this as well as other variations in the cascaded setup.

Another interesting variation on the cascaded setup was presented by Oppenheim

e t  a l .  [164, 45],, who further expanded the applications of synchronizing  chaotic

systems by demonstrating how synchronized  chaotic systems could be used in a

scheme for private communication. This scheme is also a cascading arrangement

in which the original drive is reproduced in a particular system, namely the Lorenz.

It turns out that this system has a great ability to clean up the incoming signal

and reproduce only the original drive signal from the Lorenz system. One can take

advantage of this fact and use the new clean drive to expose signals masked by the

original drive or to clean out noise in the original drive channel. This is a rather

remarkable result and may hold for some other cascaded arrangements. For example,

Kocarev et al. [109] have applied the Oppenheim/Cuomo scheme to the double-scroll

circuit.

Modified Method for Synchronizing  and Cascading Chaotic Systems.

As said in the previous sections, Pecora and Carroll [174, 175] have considered the

situation of unidirectional coupling, in which a chaotic signal from a drive system is

used to force a second response system. In the Pecora-Carroll method a subsystem

of the drive, that is common between the two systems, is used to make the response

synchronize with the drive. Güémez and Matias introduced a modification of this

one-way synchronization  method, such that one does not need to split the system in

subsystems [78, 81]. Therefore, both drive and response have the same dimensionality.

The main idea behind the method is to generalize the coexistence of different signals in

the same chaotic oscillator, allowing the driving signal to enter at one or more terms in

the evolution equations of the response. This yields the same result obtained within

the original Pecora-Carroll method with a cascade of two subsystems. The main

advantage of this method is that the dynamical evolution of the driving signal in the

response is not suppresed, and, thus, one can consider more general arrangements of

the connected systems, such as arrays of chaotic units. Since with a single connection

one has nontrivial output for all the variables, it is possible to connect many low-

dimensional systems in different ways, including simultaneous connections.



Chapter 3

Synchronization of
Spatio-Temporal Systems.

3.1 Introduction.

The theory of complex systems, such as neural assemblies or lattices of chaotic

oscillators has generated many new problems including the synchronization or

regularization of the cooperative behavior of systems consisting of chaotic elements,

regular spatial patterns in chaotic lattices, and so on. Analysis of complex systems

are quite novel for nonlinear dynamicists who set absolutely new problems that

necessitate new approaches. As an illustration, two of such problems generated by

neurophysiology can be considered. Briefly, one would like to understand the key

features that make possible

l the birth of regular, predictable behavior in a complex system consisting of

elements with chaotic individual dynamics, and

l the construction of fast systems from slow elements.

It no longer seems surprising that a chaotic system, which is a completely

deterministic, relatively simple dynamical system is able to exhibit complex, irregular

and unpredictable temporal behavior. A much more challenging issue is the apparent

self-organization which comes up in some networks of such chaotic elements. It is
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quite surprising how it is possible for complex systems with a large number of degrees

of freedom to produce regular patterns and regular rhythms. This phenomenon is

frequently encountered in biological systems where chaotic elements work together to

produce functional activity associated with living animals and directed responses to

sensory inputs which produce cooperative motor functions.

It has only recently been demonstrated that many oscillating neurons are

dynamical systems operating in a regime which possesses low-dimensional strange

attractors [8, 152, 87, 3, 29, 68]. The experimental studies and many additional

modeling studies listed above merely demonstrate that the behavior of individual

neurons which are part of small and large neural assemblies generate chaos. At the

same time, networks of neurons, as a whole, behave in a predictable fashion. Small

neural networks such as central pattern generators (CPGs) produce regular rhythmic

motor patterns that control muscles. An increasing number of new experiments

have appeared confirming the fact that the dynamics of neural assemblies are more

regular than that of an individual neuron [141,  86]. This also appears to be the case

for neurons in the human cortex [28],, where structures consisting of a large number

of neurons coupled all-to-all play the role of individual elements in the assembly.

It is important to clarify that this regular behavior is not the most common

behavior that can arise when chaotic elements are coupled dissipatively. Intuition

gained in the analysis of other chaotic elements coupled dissipatively such as coupled

electrical oscillators, autocatalytic chemical reactions with diffusion, and so forth,

suggests that the behavior of an assembly can function as a simple yet still chaotic

unit [6, 30]. Indeed, the electrical coupling that is proportional  to the mismatch

of the variables in coupled oscillators, e(~i(t)  - I) where E is the magnitude

of coupling, tends to drive the error signal to zero. If the dissipative coupling

is strong compared to the growth rate of spreading chaotic trajectories, then the

chaotic oscillators are completely synchronized  and function as a unit. For weak

coupling, on the other hand, the regime of chaotic synchronization  xl(t) E x2(t)

is unstable, and the dynamics of the pair becomes more complicated. Namely, the

number of positive Lyapunov exponents is doubled, the dimension of the limiting

chaotic set grows, and so forth. Such electrical (dissipative) couplings are encountered

in neural networks too, although couplings through chemical synapses are more

typical. Synaptic couplings exhibit the two typical nonlinear features of threshold

and saturation. Such a coupling changes significantly the dynamics of spikes and



may lead to a complete suppresion of chaos [3].

As mentioned above, another very challenging problem is the understanding of

the mechanism of fast operation in systems consisting of slow elements. This can be

realized, in particular, in complex systems consisting of strongly nonlinear elements

possesing essentially nonisochronous individual dynamics. One good example is the

brain itself, that is able to perform various tasks in a short time, although the neurons

on which these tasks rely are relatively slow. How is this possible?.

Neuroethological studies have identified that the specialized  computational

systems of some animals are able to process temporal information with a resolution

that exceeds by orders of magnitude that of individual neurons. This phenomenon,

called hyperucuity [192],  is very important due to the high accuracy achieved by

these animals in vital tasks. Some examples are the auditory system of the barn owl

[114],  the electric wave detecting system of some electric-emitting fishes [98] and the

sonar system of echolocating bats [222].  The idea is that a small neural assembly

may exhibit a transition to a fast collective oscillatory state that is in the desired

microsecond scale.

Barn owls, Tyto alba, are night predators that rely almost exclusively on auditory

clues to locate their preys. They are able to analyze information arriving at both

ears to locate objects in azimuth and elevation, [114] through the separate analysis of

interaural time differences and intensities, respectively  [108, 151]. This information

converges then to higher stages so that owls are able to detect interaural time

differences as short as 10 microseconds, that imply a resolution better than one

degree in azimuth. Analogously, electric fishes of the genus Eigenmunniu have a

very sophisticated system that they use in the so-called jamming avoidance response.

These fishes use self-generated electric fields for object detection and navigation,

but this system fails if another electric fish is using a similar frequency, as the

superposition wave, a beat, has an almost zero amplitude for some finite time.

The fish responds to this situation by shifting away its frequency using a quite

sophisticated phase-comparison system, that, remarkably, can resolve time differences

as small as 0.4 microseconds [192].

The open question is: which is the mechanism used by these animals to achieve

this remarkable microsecond resolution from the use of slow neurons operating in the

scale of miliseconds [106]?. The work developed in this chapter is based on structures



that arise from instabilities in the uniform synchronized  state of small assemblies of

chaotic nonlinear analog oscillators. We will see that some of these structures (called

rotating waves) involve a fast collective behavior (faster than the associated to the

isolated oscillators). This is a phenomenon analogous to the one that ocurrs in the

real systems described above and could help to understand them a bit more.

In Section 3.2 a description of the numerical and experimental setup is presented.

The nonlinear oscillators we will use to simulate assemblies of chaotic systems are the

Lorenz oscillator and the Chua’s oscillator. Thus, in Section 3.3 we show the results

obtained when considering open linear arrays of chaotic oscillators, while Section 3.4

is devoted to circular geometries.

3.2 Setup.

3.2.1 Numerical Setup.

Different geometries of coupling chaotic oscillators are described in the next

subsections. The coupling between oscillators has been chosen in such a way that

yields synchonization when two oscillators are considered. As it was said before,

the nonlinear oscillators chosen for the computer simulations have been the Lorenz

oscillator and the Chua’s oscillator (see Appendix A), two classical paradigms for

chaotic behavior. These two dynamical systems have played a prominent role in the

modeling, investigation and understanding of new dynamic nonlinear phenomena,

especially chaotic behavior [127,  40].

The purpose of Lorenz was to analyze the unpredictable behavior of the weather.

He first expanded a set of nonlinear partial differential equations (Navier-Stokes

equation under Boussinesq approximation) by Fourier transformations and then

truncated them by retaining only three modes [126, 224]. The resulting equations

are generally called the Lorenz equation, which in dimensionless form is represented

by the following third-order ordinary differential equations

i = a(y -x)

zj = Rx-y-xx

i = xy-bx,

(3.1)



where, roughly speaking, the variable z measures the rate of convective overturning,

the variable y measures the horizontal temperature variation, and the variable

x measures the vertical temperature variation. The parameters 0 and R are

proportional to the Prandtl and the Rayleigh number, respectively.

Although the origin of the Lorenz equation is in the meteorological field, many

authors have derived Eq. (3.1) from other physical systems: Haken has used the

Lorenz equation to model the irregular spiking phenomena in lasers [82]. Malkus and

Yorke to study the problem of convection in a toroidal region [135, 241], Knobloch

has derived that equation from a disc dynamo [107],  Pedlosky and Frenzen from a

study of the dynamics of a weakly unstable, finite amplitude, baroclinic wave (two-

layer model). The Lorenz equation has also been used to describe the dynamics of

the simplest laser model (e.g. the Shimizu-Morioka System [208]).

On the other hand, Chua’s aim [39] was to actually build a real physical electronic

circuit capable of reproducing chaotic phenomena previously known from different

analytical models, including the Lorenz equation. To simplify practical considerations

and to provide rigorous mathematical proof of the existence of a chaotic attractor in

Chua’s circuit, Chua chose a 33segment piecewiselinear function of one variable as

the nonlinearity in Chua’s equation (see Appendix A), in contrast to Lorenz, who had

needed two polynomial functions of two variables as the nonlinearity in the Lorenz

equation (see Eq. (3.1)). It is because of its simplicity, robustness, and low cost that

Chua’s circuit has become a favorite tool for analytical, numerical and experimental

study of chaos. Notice that it became the first real physical object in which chaos

was proved analytically [36, 37], numerically [134],  as well as experimentally [244].

Lorenz Oscillator.

We are going to consider an array of N identical Lorenz oscillators coupled through

partial unidirectional injection of a signal produced by one oscillator into the next one

[78], either forming an open linear geometry or a closed loop. Thus, the dynamical

behavior of each Lorenz system is governed by the following set of dimensionless

differential equations,

xj = O(?Jj  -Xj)

Yj' = RZj-yj-xjxj j=O,...,N-1, (3.2)
ij = xj yj - b xj



where the coupling enters through ~j, defined as 5 = ~j__~,  with z. = 20 in the

case of an open linear array and with ~0 = zN_1 in the case of a circular one. An

illustration about the influence of the variables of one oscillator on the following one

is shown in Fig. 3.1, in which the dashed line has sense only when considering a ring

geometry.

’ x1wYl

. . .

Figure 3.1: Influence of the variables of one Lorenz oscillator on the following one in the
array. The dashed line corresponds to a ring geometry.

The values of the parameters are the standard ones, namely, (a, R, b) =

(10,28,8/3).  In this way, for any set of initial conditions all Lorenz systems are

in a chaotic regime when they are uncoupled. The set of equations (3.2), together

with suitable boundary conditions are integrated by using a stable fixed-step fourth-

order Runge-Kutta method with a stepsize of At = 0.001 time units (t.u.). The

isolated systems are allowed to evolve without coupling for an amount of time such

that the system dynamics take place in the chaotic attractor. Then, the oscillators

are connected in the form described by Eq. (3.2).

Chua’s Oscillator.

We are also going to consider arrays of chaotic Chua’s systems [134] that are coupled

through driving, in particular, through the variant of the Pecora-Carroll method [174]

introduced by Güémez and Matías [78]. This way of coupling will be used for open

linear arrays as well as for closed loops.

The dynamics of an array with N units can be modeled by a system of 3N

first-order autonomous nonlinear differential equations, that in explicit resealed



dimensionless form (including coupling) are written as,

5' = czl[yj-Xj-f(Zj)]

Gj = Xj - Yj + Zj

1

j = O , . . . , N - 1 (3.3)
ij = -P Yj - 7 zj

w h e r e  Q = CJCi, p = CJ(LG2), and y = ( C2 q,)/(L  G). The three-segment

piecewise-linear characteristic of the nonlinear resistor (Chua’s diode) is given by,

f(x) = {bx + ;(a - b)[lx + 11 - Ix - 111) (3.4)

where a and b are the slopes of the inner and outer regions, respectively, of f(z).

Driving is introduced through f(Zj), and Zj = xj-1 for j # 0, while for j = 0 and

depending on the type of arrangement, one has ~0 = x0 for open linear arrays, while

for closed loops ~0 = XN-1. Figure 3.2 illustrates the influence of the variables of one

oscillator on the following one for the case of an open linear array as well as for a

ring geometry of Chua’s circuits.

YO

xl-FYl

Figure 3.2: Influence of the variables of the circuits on the following ones for an array of
Chua’s oscillators coupled in an open linear geometry and in a closed loop. In the latter
case the variables of the last circuit affect the dynamics of the first one. This influence is
represented by the dashed line.

Apart from studying the behavior of an isolated array of Chua’s circuits, either

with an open linear geometry or a circular one, the interaction between two different

rings of Chua’s oscillators has also been considered. Two rings, each one consisting

of N Chua’s circuits, have been connected cell-to-cell in a diffusive way and, as

before, each circuit inside each ring is coupled unidirectionally by driving through

the nonlinear element. If we label with the superindex i the corresponding ring and



with the subindex j the position of each circuit inside the ring, the dynamics of each

oscillator can be represented by the following dimensionless evolution equations

where j = 0,. . . , (N - 1) runs over the number of elements in the ring, i = 0,l runs

over the number of coupled rings and D represents the coupling constant between

rings. Notice that the operations on the j indices and i indices are modulo N and

modulo 2, respectively.

When considering two rings of oscillators coupled in the way described above, two

different configurations can be obtained depending on the equal or different sense of

the driving connections in each ring. Therefore, two different configurations have

been analyzed,

l cells within a ring were unidirectionally coupled in the same direction as shown

in Fig. 3.3: parallel coupling,

28 Iryo0
%

I I

ZPB-Y1

$ . . .

Figure 3.3: Parallel coupling.



l cells within a ring were unidirectionally coupled in opposite directions as shown

in Fig. 3.4: antiparallel coupling.

Yt1z:

x’N-lI3YlN-1

z’N_l

Figure 3.4: Antiparallel coupling.

Thus, for parallel coupling ~~ = ~i_i for both i = 0, 1, while in the case of antiparallel

coupling this variable will be different for the two rings: for one of them, say i = 0,

$j = zg_i, while for the other one Z: = ~i+i.

The set of parameters used most of the time for the numerical calculations

h a s  b e e n  e i t h e r  (o,!,,~,a,b)  = (10 ,14 .87 ,0 .06 , -1 .27 , -0 .68)  or (o,p,y,a,b)  =

(10,12.1,0.22, -1.26, -0.79). The former has been chosen because it represents the

standard values and the latter because it is the set of values of the experimental setup.

The set of equations (3.3), together with the suitable boundary conditions, zero-flux

for linear arrays and periodic for closed loop arrays (or rings), have been integrated

by using a stable fixed-step fourth-order Runge-Kutta method with a stepsize of

At = 0.001 t.u. (1 t.u. = 0.1 /JS for these values of the parameters). In all numerical

simulations, the isolated systems have been allowed to evolve without coupling for

an amount of time such that the system dynamics take place in the double-scroll

(chaotic) attractor. Then, the circuits are connected with the desired topology in the

form described by Eq. (3.3) or Eq. (3.5).



3.2.2 Experimental Setup.

Experiments have been performed in a board containing twenty Chua’s circuits

in chaotic regime. The nonlinear element of these Chua’s circuits has been

modified according to the design shown in Section A. 1. The components of

the circuits are defined by (Cl, C2,  L, ~0, R) = (10 nF, 100 nF, 10 mH, 20 R, 1.1 kR),

(which corresponds with the dimensionless set of parameters (a, /3, y, a, b) =

(10,12.1,0.22, -1.26, -0.79)). The tolerances of the components employed are: 10 %

for inductances, 5 % for capacitances and 1% for resistances. In most of the

experiments, the circuits have been sampled with a digital oscilloscope (Hewlett-

Packard 54601) with a maximum sampling rate of 20 millions of samples per second,

8 bit A/D resolution, and a record length of 4000 points. However, in some cases,

we have used a different digital oscilloscope (Hewlett-Packard 54645D) with zoom in

order to visualize transient phenomena otherwise too fast to be observed with a more

conventional oscilloscope.

Figure 3.5: Chua’s circuits coupled in two different ways: mutual diffusive coupling and
unidirectional driving coupling.

The board has been constructed in such a way that circuits can be connected



either by driving and/or by diffusive coupling. Both connections are represented in

Fig. 3.5. The driving coupling is carried out by connecting the node 1 of the driving

circuit with the node 3 of the response one (see Fig. A.3). The diffusive coupling,

only used to study the interaction between two different rings, is carried out with a

resistor, R,, that connects the node 1 of the i-th circuit in the first ring with the node

1 of the i-th circuit in the second ring. In this case, the evolution equations for each

circuit are

Cl
dV~j
2=

Vzi,j  - Vj,j
dt R

_ g(E) + P?,:’  - V,j>
133 RC

(72

dV,j
2 =

V;,j - Vi,j
dt R

+ Ii,j ( 3 .6 )

L dI;j
2 =  -qj - r;,j Tg )

dt
where j = 0, . . . , (N - 1) runs over the number of elements in each ring and i = 0, l

runs over the number of coupled rings. Coupling within each ring enters in the

nonlinear element, as the corresponding term, g(Vl,j)  y is not driven, in principle, by

the voltage across capacitor Cr of the j-th circuit, but by the voltage across capacitor

Cr of a different circuit of the same ring. The precise driving circuit depends on the

type of coupling: parallel or antiparallel. The relationship between the dimensionless

coupling constant D from Eq. (3.5) and the physical parameter R, from Eq. (3.6) is

D = aR/R,.  Thus, strong coupling is given by low values of R, (high values of the

coupling constant D), and weak coupling is given by high values of R, (low values of

9

Notice that when considering open linear arrays, the first element of the array

corresponds to a non-modified circuit (obtained just by connecting together node 3

and node 1 of that circuit).

3.3 Open Linear Arrays of Chaotic Oscillators.

3.3.1 Numerical Results.

When the elements of an open linear array of N Lorenz oscillators are coupled as

described in Section 3.2.1, synchronization  is observed after some transient time in

which each oscillator has to adapt its own dynamics.



Figure 3.6 represents the variable x of three Lorenz oscillators from an array of

N = 20 before and after coupling. Synchronization  does not happen instantaneously,

but, instead, it takes place as a synchronization wave spreads through the system.

Therefore, the oscillators in the array synchronize with the first one consecutively,

in such a way that the first oscillator imposes its behavior to the whole array. As

shown in Fig. 3.6, the two first oscillators practically synchronize at the instant

when connection is carried out and there is hardly time in which the oscillators are

not doing the same. However, moving forward through the array we can observe the

existence of a transient time, that gives rise to oscillations not confined to the own

boundaries of the attractor. Observe, in Fig. 3.6, the behavior of the eighteenth

oscillator before synchronization is achieved. This happens approximately at 40 time

units.

I 1 1 I 1 I
25 30 35 40 45 50

Time (t.u.)
I I I I I

I I I I I I
25 30 35 40 45 50

Time (tu.)
I I I I I I

I 1 I I I I
25 30 35 40 45 50

Time (t.u.)

Figure 3.6: Temporal evolution of the variable z of the first, second and eighteenth Lorenz
oscillators, namely, ~0, ~1, 217, respectively, before and after coupling. Notice that coupling
is carried out at time equal to 30 t.u. and that standard parameters have been used.

Leaving aside the behavior of the oscillators before synchonization, we can focus

our attention on the characterization  of the properties of the synchronization wave.

Figure 3.7 shows the synchronization time (amount of time needed by the cells to be

considered as synchronized  [182,  12, 174, 175, 197, 18, 10]), called T,, as a function



of the length of the array (measured in number of oscillators) for two different sets

of parameters: (a, R, b) = (10,28,8/3)  and (a, R, b) = (18,28,8/3) .  For each set of

parameters we observe a linear relationship between the synchronization time and

the number of oscillators in the array. Therefore, the synchronization wave can be

characterized by a constant velocity. The value of this velocity is given by the inverse

of the slope of the straight lines in Fig. 3.7. In particular, for (a, R, b) = (10,28,8/3)

the value of the velocity is, approximately, 1.33 osc./t.u. (oscillators per time unit)

while for (a, R, b) = (18,28,8/3)  this approximated value is 2.94 osc./t.u..

0 5 10 15 2 0
N (osc.)

Figure 3.7: Representation of the synchronization time as a function of the number of
Lorenz oscillators in the array for two different sets of parameters: (a, R, b) = (10,28,8/3)
(‘0’) and (a, R, b) = (18,28,8/3)  (‘*‘).

Notice that synchronization is being considered in the numerical simulations when

the condition (z~-_i  - ~0)~ + (YN-~ - ~0)~ + (XN-i - ~0)” < 10e3 is satisfied.

At difference to the case of classical waves in linear systems or autowaves in

dissipative media [121],  chaotic synchronization waves may carry information through

the array of cells. This information can be encoded in the first element of the array

(using, for example, the method in Section 4.2.1 or the one that will be described

in Chapter 5) and so be transmitted through the array. Thus, the study of this

synchronization wave can provide some insight into the transmission of signals in

Cellular Neural Networks (CNNs) [38] or be useful for signal processing applications.

The same behavior is obtained in numerical simulations when considering an

array of Chua’s circuits coupled as described in Section 3.2.1. In Fig. 3.8 we can



see synchronization of three chaotic circuits: the first, the second and the fifth from

an array of N = 20. As in the previous case, we let the circuits evolve for a certain

time before connecting them and we observe that the two first oscillators synchronize

almost instantaneously whereas the rest of the circuits in the array spend a transient

time proportional to the distance from the first oscillator. Thus, we observe again the

existence of a synchronization wave that propagates through the array with a constant

velocity [128, 129, 130]. Now, however, the transient time each circuit spends before

synchronization is longer than in the Lorenz case. Therefore, bigger oscillations in

the transient regime already appear in the first oscillators in the array, although, as

it may be expected, these ocillations  grow up as we move forward through the array.

In an approximated way, the duration of the transient behavior obtained for the fifth

Chua’s circuit coincides with that of the eighteenth Lorenz oscillator (compare Fig.

3.8 with Fig. 3.6).
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Figure 3.8: Temporal evolution of the variable x of the first, second and fifth oscillators,
namely, x0, x1, x4, respectively, before and after coupling. The coupling among circuits
is carried out at time equal to 120 t.u., and the set of used parameters is (a, @,~,a, 6) =
(10.0,12.1,0.22,  -1.26, -0.79).

Figure 3.9 represents the dependence of the synchronization time on the

length of the array for two different sets of parameters: (Q,P,W,~)  =



(10 .0 ,12 .1 ,0 .22 , -1 .26 , -0 .79) and (~J,y,a,b) = (10,14.87,0.06,-1 .27, -0.68).

There exists a linear relationship between these two magnitudes, what implies

a constant velocity of the synchronization wave. F o r  (o,P,~,o,b)  =
(10.0,12.1,0.22, -1.26, -0.79) the approximated value of this velocity is 0.0543

osc./t.u. whereas for (a, /3, y, a, b) = (10,14.87,0.06, -1.27, -0.68) this value is 0.0246

osc./t.u.. Now synchronization has been considered when (z~_i -Q)~+(YN-~  -YO)~+

(X&i - .Ze>z  < 10-s.
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Figure 3.9: Representation of the synchronization time versus the number of
Chua’s circuits in the array, for two different set of parameters: (01, P,r, a, b) =
(10.0,12.1,0.22,-1.26,-0.79) ('0') and (cr,p,y,a,b)  = (10,14.87,0.06,-1.27,-0.68) ('*').

3.3.2 Experimental results.

Chaotic synchronization has also been obtained experimentally in an array of ten

Chua’s circuits. This feature is not obvious at all, because one could expect that

the tolerances inherent to electronic components would make this phenomenon to

deteriorate along the array. However, the tolerances used in the experimental

setup (see Section 3.2.2) are small enough so they do not affect the synchronization

phenomenon.

The experiments have been performed in the board described in Section 3.2.2. In

order to measure the synchronization time we need to incorporate to the setup an

automatic mechanism made up of some relays (one for each circuit) and a switch,

in such a way that all circuits are coupled at the same time. This mechanism



introduces some noise into the system and, thus, as we move forward through the

array, synchronization is harder to achieve.

Figure 3.10: Temporal evolution of the voltage at the capacitor Cl for the first and fourth
circuits of the array before and after coupling them. A transient behavior can be observed
before synchronization is achieved. In the zoom on the left we are plotting the temporal
evolution of these circuits around the coupling instant, 538 ms, while the zoom on the right
represents the evolution around the synchonization instant, 613 ms.

In order to find out how long two circuits take to synchronize  we have used a

digital oscilloscope HP54645D with zoom, which allows to broaden some desired

zones of a prerecorded image. Figure 3.10 shows two different zooms of an image in

which the signals from the first and fourth circuit of an array are plotted. One zoom

represents the temporal evolution of such circuits around the instant of connection

and the other one represents the same around the synchronization moment. The

coupling among circuits occurs at time equal to 538 ms (see left zoom in Fig. 3.10)

and the synchronization is achieved at time 613 ms (see right zoom in Fig. 3.10).

Therefore, the synchronization time (duration of the transient behavior) in an array

of four Chua’s circuits is around 75 ms. Notice that in the transient time the circuits

move on the external limit cycle characteristic of the Chua’s circuits in which the



variable VI oscillates between +12 volt and -12 volt.

In order to know the relationship between the synchronization time and the length

of the array 50 experimental realizations for different array lengths have been carried

out. The results are shown in Fig. 3.11, where the linear relationship between

these two magnitudes shown in numerical simulations is experimentally confirmed.

The error bars represent the standard deviation of 50 realizations with respect to

the average value. The velocity of the synchronization wave for the values of the

components described in Section 3.2.2 is approximately equal to 0.0747 osc./ms.
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Figure 3.11: Synchronization time obtained experimentally as a function of the length of an
array of Chua’s circuits. The components of the electronic circuits are (Cl, Cz, L, rg, R) =
(lOnF, lOOnF,  10mH,20~,l.lk~).

3.3.3 Theoretical Analysis.

Synchronization means that the dynamics of the compound system collapse onto

an invariant manifold in the global phase space of the coupled systems, called the

synchronization manifold.

A theoretical analysis about the synchronization of two consecutive oscillators can

be carried out by considering the evolution of perturbations that bring the system

outside the synchronization manifold. At a local level this can be done by studying

the time evolution of small perturbations that are transverse to this manifold, i.e., by

performing a linear stability analysis of these perturbations. This analysis will yield



a linear equation of the form

sx = xi - x, = Z6x + 0((sx)2), (3.7)

where 6x = xi - x0 and the relevant information about the synchronized  behavior of

the two oscillators is contained in the matrix Z. Therefore, we are going to calculate

this matrix for the two first oscillators, x0 = (~0,  yo, ~0) and xi = (~1, yr, G), of the
open array of Chua’s circuits.

The evolution equations of the first circuit in dimensionless form are

$J =
?jo =
&I =

4Yo - x0 - .f(xo>l
x0 - Yo + 20
-PYo - 720

and the corresponding ones of the second circuit

ii =
til =
.& =

4Yl - Xl - f(n)]
Xl - y1 + 21

-PYl - 7x1

(3.8)

(3.9)

Thus, substracting  Eq. (3.9) out of Eq. (3.8) one obtains the following time evolution

equations of the differences between the two systems

Bx = a[Sy - 6x]
6-y = 6x - 6y+6x
ix = -p6y-ysz,

(3.10)

which in a more compact form can be written as 6.x = Z 6x, being 6x = (6x, 6y, 6x)

and

(3.11)

Notice that this matrix is identical to the Jacobian matrix corresponding to an

isolated Chua’s circuit except by the terms that are cancelled because of the

connections that are carried out. Thus, the former can be calculated from the latter

just by setting to zero the entries corresponding to the connection in the linearized

approximation to the flow [78, 79]. The connection enters through the nonlinear

element f(x) in Eq. (3.9),  and this is the reason why the matrix (3.11) has only

constant coefficients.

In order to know the asymptotic behavior of these two coupled oscillators, it

is interesting to solve Eq. (3.7). This can be done by calculating the transverse



Lyapunov spectrum, which can be obtained by taking the real part of the eigenvalues

of the matrix (3.11),, where one does not need to perform the usual t + 00 limit,

as the coefficients of the matrix are constant for this particular arrangement. Recall

that small deviations from the synchronized  state behave in the form x = Z x and

this implies that

x(t) = x(0) exp(At), (3.12)

where A is obtained by transforming matrix Z to diagonal form, that is, A is the

diagonal matrix that contains the transverse Lyapunov exponents. For the type

of connection used in these simulations all the transverse Lyapunov exponents are

negative, which implies synchronization between the two systems. One may assume

that Eq. (3.12) is dominated by the highest transverse Lyapunov exponent Xi, i.e.,

x(t) = x(0) exp(-1X1]  t), that defines arelaxationalprocess in a timescaler = 1/1X1].

Thus, the velocity of synchronization between two oscillators is determined by the

highest transverse Lyapunov exponent. The bigger the absolute value of the highest

transverse Lyapunov exponent is, the quicker the synchronization occurs.

When considering an array of chaotic oscillators the synchronization process is

observed gradually. Thus, first of all the two first oscillators synchronize, then a third

oscillator synchronizes  with the previous ones and so on. What is a little surprising

is that each oscillator spends the same amount of time in synchronizing  with the

previous one, once this previous oscillator has achieved synchronization (constant

velocity of the synchronization wave, shown in Fig. 3.9). This is because the time

needed for each oscillator to synchronize with the previous one depends only of the

value of Q-, defined above. Thus, one can associate the velocity of the synchronization

of the two first oscillators of the array with the velocity of the synchronization wave

v,.

As it may be expected, the bigger the absolute value of the highest transverse

Lyapunov exponent, calculated from two oscillators, is, the bigger the velocity of the

synchronization wave will be. It has been found that for an open array of Chua’s

circuits connected as defined in this section the dependence of this velocity V, on Xi

is linear, as shown in Fig. 3.12, that has been obtained from numerical simulations

with different values of the parameters.

A similar analysis for linear arrays of Lorenz oscillators in chaotic regime has been

recently published  [461].
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Figure 3.12: Representation of the average velocity of synchronization  V, versus the
highest transverse Lyapunov exponent, showing the linear relationship between these two
quantities.

3.4 Rings of Coupled Chaotic Oscillators.

Rings of coupled (discrete) cells are relevant in the study of some physiological

and biochemical systems. This was the motivation of the seminal work by Turing

[226, 156], who used this kind of system in his proposal of a plausible model of

morphogenesis. Later, this kind of models were used to study slow-wave activity in the

mammalian intestine [125].  One of the most interesting fields where rings of coupled

cells have come up as a useful modeling tool is that of neural systems, namely in the

context of Central Pattern Generators (CPGs) [86]. These are networks of neurons

in the central nervous system capable of producing an autonomous rhythmic output

(breathing, walking, running, etc.), i.e., without making use of sensory feedback with

the corresponding moving organ. Although current neurophysiological techniques

are unable to isolate such circuits among the intricate neural connections of complex

animals, there are some strong indirect experimental evidences for their existence

(see, e.g., [73, 74, 75, 76, 173, 207, 219]). Irrespective of physiological considerations,

CPG-like networks of coupled cells (e.g., electronic circuits) are an attractive option

for the design and control of legged robots, because they produce a variety of phase

relationships in a stable and natural manner [77]. An interesting study is that of

Collins and Stewart [42, 43] that, in the case of animals with a small number of legs,

obtained the patterns of oscillations (i.e., the gaits) used by these animals in their



locomotion [221].  They did so by analyzing the periodic states that arise through

a symmetric Hopf bifurcation [71] from the trivial stand gait and by using simple

symmetric networks of coupled identical cells.

Although rings are a useful way of implementing CPGs, it is impossible to obtain

all the gaits (phase relationships) from a single ring of coupled oscillators, whose

symmetry, connectivity, etc. are fixed. Thus, it is natural to think of extending

the simplest ideas by considering more complex networks of coupled oscillators. A

possible extension consists of assemblies of 2 N identical oscillators in which the

CPG consists of two rings. The oscillators within a ring have identical unidirectional

coupling, while the two rings are coupled transversally by a different type of coupling

(bidirectional). In this way one has a probably more realistic representation of

CPGs of bilaterally symmetric animals, that, hopefully, will describe more accurately

locomotion in these animals. Among the models of identical cells to simulate the

behavior of CPGs, it is important to mention the study of Collins and Stewart

[42], who considered two coupled rings each comprising three oscillators, and that

of Ermentrout and Kopell [118].  Another recent important study was carried out by

Golubitsky et al. [72], who proposed a modular symmetric network consisting of two

mutually coupled rings, each one made of 2 N identical cells coupled unidirectionally,

to reproduce the phase relationships found in gaits of a 2 N-legged animal. In

addition, more complex networks have also been studied. One example is the

modeling of the human colon [17], that consists of 33 symmetrically coupled three-

membered rings.

The study and modeling of CPGs needs to take into account not just the topology

and detailed form of connections, but also the local dynamics of the oscillators.

Although most of the studies [42, 43, 72] consider a quiescent or periodic local

dynamics, it is important to recall that experiments performed in recent years indicate

that normal activity of a single, i.e., isolated, neuron is deterministic chaos [87, 152,4].

For this reason, our attention will be focussed on the study of rings of identical chaotic

oscillators with unidirectional coupling. It is interesting to emphasize  the richness of

dynamical behaviors that are possible in this kind of systems. In particular, surprising

structures arise when a desynchronizing  transition occurs in the global synchronized

state. We will show the case of a ring of identical Lorenz oscillators and another one

of identical Chua’s oscillators. With the particular setup considered in this work, a

for Lorenz oscillators a periodic structure is observed when the instability appears,



whereas for Chua’s oscillators the observed structure is chaotic. Finally, we will

analyze what happens when considering two rings of Chua’s oscillators with mutual

diffusive coupling between them.

3.4.1 Rings of Lorenz Oscillators.

The behavior of a ring of Lorenz oscillators, initially in a chaotic state and coupled as

described in Section 3.2, will be analyzed in this section [143, 138]. Our attention will

be focussed on the study of the stability of the global synchonized state. To do this,

we will introduce a theoretical analysis based on the transverse Lyapunov exponents,

followed by numerical simulations that confirm this theory.

Theoretical Analysis.

The behavior of the ring can be analyzed in a convenient form by means of a

linear stability analysis of the oscillators in the system starting from the uniform

synchronized  state. Let us consider a ring with N identical Lorenz oscillators, coupled

in the way described by the set of Eqs.(3.2).  This set of equations can be written in

a compact form as,

kj=Gj(xo  ,..., x~_~) j=O ,..., N - l  (3.13)

where xj = (zj, 1~j, +) is the coordinate vector of the jth Lorenz oscillator in the ring

and Gj : !R3xN + $I3 is the function that describes the temporal evolution of the jth

oscillator, defined by

G.&I,. . - ,xN-I) = (a(!& - Xj), RX+1 - $/j - xj xj, yj - b zj), (3.14)

where operations over the index j are modulo N. Since a ring of N identical oscillators

is considered, the dynamical evolution does not vary from one oscillator to the next.

From a mathematical point of view, this means that the functions Gj are of the

shift-invariant type, since the condition

G&i, xi+~, . . . , Xi+& = Gj+l(xi_lr  xi, . . . , &+&I) i, j = 0, . . . , N - 1 (3.15)

is satisfied. All indices are understood to be taken mod N.



The linearization of the system (3.13) around the synchronized state defined by

s = x0 = xi = . . . = q-1 leads to a set of linear variational equations given by

N - l

6;cj = c DiGj(xo, ...,q~~)l~  &xi j = O,...,N- 1 (3.16)
i=o

w h e r e  6xj = xj - s with s = (za(t),ys(t),  x8(t))  and Di is  the  di f ferent ia l

operator acting on coordinates of the ith oscillator. Since the functions Gj are

of the shift-invariant type, (3.15) can be used to express all of the derivatives

DiGj(xo, . m m 7 xN-l)ls in terms of derivatives of Go(xo,  . . . , xN-l)ls.  The result is

N - l

SXj = C Di_jGs(xs,  . . . , XN-l)ls 6Xi j = 0,. . . , N - 1 (3.17)
i=o

These equations can be placed in the form of a discrete circular convolution by

defining the backward sequence

{Hi,f$’ = {DoGoL, DN-IGoI~,DN-~Go~~,  -. . , DlGol,}. (3.18)

The variational equations then become

N - l

Sxj=-CHj_i  &Xi j=O,...,N- (3.19)
i=O

where

Ho=( s 2 is), Hi=( i I i), H~=...=HN-i=Osxs.

(3.20)

Remember that these matrices are evaluated in the synchronized state s. An easier

way of seeing the discrete circular convolution (3.19) is by means of the following

expression for the global system,

’ Ho 0 0 0 ... 0 Hi / 6x0
Hi Ho 0 0 ... 0 0 6x1
0 Hi Ho 0 ... 0 0 (5x2

= 0 0 HiHo... 0  0 . . . (3.21)
. . . . . . . . . . . . . . . . . . . . . . . .. . .

6k,_, 0 0 0 0 ~~~ Ho 0 &XN-2

$k,_, (0 0 0 0 . ..HIHo \ dXN-1

and from now on this matrix will be called matrix H. If we define the vector

6x = (6x0,.  . . , &N-1),  this last equation can be written as,

6x= H&x, (3.22)



The structure of this matrix is circulant since it represents a convolution sum. For this

reason, the Fourier transform diagonalization method can be applied [163].  Thus, one

can put Eq. (3.21) in a more convenient form through the use of the Discrete Fourier

Transform (DFT) [226, 94]. Introducing discrete Fourier transforms of the sequence

(3.18) and the sequence {Sxo,6xi,.  . . , SXN_~}, called C(“) and ~(“1, respectively,

yields
C(k) = Cj”-i JQT,

(3.23)
r](k) = x;=&i JXjc,V,

so the matrix in (3.21) is block-diagonalized by virtue of the convolution theorem for

discrete Fourier transforms [163],  which says that convolution of sequences implies

multiplication of the corresponding Fourier transforms. Thus, the transformed

variational equations are given by the Fourier modes

@) = C(“+@) k = 6, . . . , N - 1, (3.24)

that are decoupled. In a global form, this is represented by a block-diagonalized

matrix, as shown the following equation,

(3.25)

p-1) / \ 0 0 . . . c(N-’

Note that ~(~1 for the Lorenz case is a 3 x 1 dimensional vector. The structure of

each block can be written in the form,

c(“) = (Re;:  2,)( 0 0

- 1  -xs ) (3.26)

Ys x3 -b

with ek = exp(i 27r k/N) and being k = 0, . . . , (N-l) the Fourier modes of the system,

with N the number of oscillators in the ring. Notice that the Cc”)  matrices have time-

dependent (chaotically varying) coefficients, namely x3(t), ys(t) and zS(t). Thus, we

have chosen to characterize its stability by determining the corresponding Lyapunov

spectrum considering the infinitetime limit of the real part of the eigenvalues of this

matrix. This has been done by generalizing Wolf’s algorithm [235] to the case of

complex vector spaces.

Before proceeding, it is useful to discuss the geometry of the variations ~(“1. The

global dynamical system, in which the dynamics of each oscillator is governed by



Eq. (3.2), evolves in %3N. The synchronization manifold M c ?J13N is defined

by the conditions x0 = x1 = . . . = XN-1. Synchronous oscillations of all types

(not just chaotic solutions) are constrained to this manifold. The synchronization

conditions represent 3(N - 1) constraint equations. Therefore the dimension of M
is 3N - 3(N - 1) = 3, which is the phase space dimension of a single oscillator. The

Fourier transform basis #‘) provides a convenient decomposition of the variations

into variations within the synchronization manifold M and variations transverse to

this manifold. The variation q(O) is within M and the remaining variations r]@),

k = 1, . . . . (N - 1) are transverse to M and control the stablity of the synchronized

state1.. Stability of the synchronized state is ensured if arbitrary small transverse

variations decay to zero. In some cases, as it occurs for the Lorenz oscillators

connected in the considered way, the variation 7co) obeys the variational equation

for a single, isolated oscillator. The k = 0 Fourier mode represents the uniform

synchronized state of the ring, and the stability of this state can be characterized

by analyzing the transverse spectrum, corresponding to Fourier modes with k # 0,

which gives information about the evolution of transversal deviations around this

state. The uniform mode k = 0 will be stable whenever this spectrum is negative.

An instability in the uniform synchronized state will occur whenever one (or more)

of the transverse Lyapunov exponents becomes positive.

In order to determine the nature (chaotic or periodic) of the synchronized state

(k = 0 Fourier mode) is necessary to evaluate the Lyapunov exponents corresponding

to the k = 0 mode. Particularly, a positive Lyapunov exponent implies chaotic

behavior. In fact, the highest Lyapunov exponent associated to the k = 0 mode is

always positive since C co) is the error growth of an uncoupled Lorenz system and the

parameters of the Lorenz system have been chosen to be in a chaotic regime.

Instead of determining the highest Lyapunov exponent associated to each

transverse Fourier mode (each k # 0) for a given size of the array, namely N,

and doing this for different values of N, a more practical procedure is to define the

reduced wavenumber Q = k/N as a continuous variable in the range [0, 1].  The highest

Lyapunov exponent as a function of Q, namely A(q), may allow one to characterize

the stability of the uniform synchronized state in a convenient way. The function

X(q), obtained by generalizing the procedure of Wolf et al. [235] to allow for a

‘Since the transverse variations are generally complex this statement is technically incorrect,
however the real forms of the transverse variations, given by x” = $(q” + qN-“)  and uk =
&)(qk - rlN-k)7 are transverse to the (real) synchronization manifold M.



complex vector space due to the presence of the complex quantity e,, is represented

in Fig. 3.13 for the case of rings of Lorenz oscillators with standard parameters. A

first remark is that X(q) in Fig. 3.13 is symmetric with respect to the line q = l/2.

This can be easily explained taking into account that for a given N the Cc”) and

CN-“)  are complex conjugate due to the presence of the term eq, implying the same

property for their spectra of eigenvalues. Therefore the above mentioned symmetry

property holds for the real parts of the eigenvalues and also for their limit when

t + 00, X(q). Moreover, an important point to notice is that as eo = 1 the Lyapunov

exponents corresponding to the uniform mode k = q = 0 are identical to those of

the isolated (uncoupled) chaotic system. Empirically it is found that X(q = l/2) < 0

for all the chaotic systems so far considered (see, Fig. 3.13). Since X(q = l/2) < 0

and A(q = 0) > 0, there must exist some value for the number of oscillators in the

ring N, for which the uniform synchronized  state becomes unstable, i.e., for which

the transverse Lyapunov spectrum (TLS) becomes nonnegative.

b I
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Figure 3.13: Representation of the highest Lyapunov exponent X(q) as a function of q =
k/N. The circles indicate the highest transverse Lyapnnov exponent for the corresponding
transverse Fourier modes in a ring of N = 2 Lorenz oscillators, whereas the squares indicate
the same for a ring of N = 3. The values of the parameters are (0, R, b) = (10,28,8/3).

The fact that an instability must appear in the uniform state of a chaotic system

at some critical size can be established by using very general arguments [21]. Due to

the observed continuity in X(q), there must exist some value of q, namely qc, such that



X(qc) = 0 (see Fig. 3.13). The wavenumber qc indicates the instability of the ring,

and the lowest possible value of N for which the k~ = N qc condition is fulfilled can

be found setting k = 1. Since N is an integer variable, it follows that the critical size

of the ring is N, Ii], where 1.1 denotes the nearest greater integer. In the case of a

ring of Lorenz oscillators with standard parameters, namely (a, R, b) = (10,28,8/3),

defined by Eq. (3.2), qc M 0.37, and so N, = 3. In Fig. 3.13 the TLS corresponding

to N = 2 and N = 3 are plotted with full circles and squares, respectively, allowing

to see in a pictorial way the transition of the TLS from negative to nonnegative.

Note that the predictions of this linear stability analysis give useful information only

regarding the onset of instability, not so much the final outcome of such instability,

that depends also on higher nonlinear terms in the expansion that are neglected in

this level of approximation.

Symmetry also determines the behavior of the ring after the onset of the

instability. The symmetry induced by the unidirectional character of the coupling

makes the eigenvalues of the matrix C (ICI to be complex conjugate of the eigenvalues

of C(N-“).  One can consider here two possible situations depending on whether

the imaginary part of these eigenvalues is zero or not. Of course, the fact that

these matrices have time-dependent (chaotically varying) coefficients implies that

the instability cannot be characterized analitically.  One can, at most, determine

instantaneous eigenvalues. As said before, information on the asymptotic behavior

of the real part of the eigenvalues can be obtained by determining the Lyapunov

spectrum of the corresponding unstable Fourier mode by generalizing the procedure

of Wolf et al. [235] to the case of a complex space. However, this procedure gives

no information about the imaginary part of these eigenvalues. One can obtain some

approximate information by replacing the nonconstant coefficients of the matrix C@)

by their average values when t + co, since this yields a problem with constant

coefficients from which the real and imaginary parts of the corresponding eigenvalues

can be determined. This averaging method has been introduced in [80] and it has

been found to be useful in yielding qualitative information about the real or complex

character of these eigenvalues. The quality of the approximation can be judged by

comparing the real part of these eigenvalues with the transverse Lyapunov exponents,

as the former quantity is an approximation to the latter. For the case of a ring of

Lorenz systems it can be shown that this procedure yields eigenvalues whose real part

is approximately parallel to those numerically determined from Eq. (3.26).



The important point here is that since the matrices C(l) and CN-‘)  are complex

conjugate, at the onset of the instability there will be two eigenvalues, say fi w, that

will cross the imaginary axis at the same time, giving rise to a Hopf bifurcation. The

theory of Hopf bifurcations in the presence of symmetry [70] says that after the onset

of the bifurcation there will be a symmetry-breaking in the system, compared to the

symmetry of the homogeneous state. In particular, in the case of the Z, symmetry

group characteristic of a ring of unidirectionally coupled elements it can be shown

[43] that one gets a branch of discrete rotating wave solutions. Instead, in the case

that the imaginary part of these eigenvalues is zero, one should not expect to obtain

this rotating-wave behavior, and it can be shown that the instability yields simply

chaotic uncorrelated behavior among the different oscillators.

The linear analysis gives information about the behavior of the system at the onset

of the instability for N > N,, but does not say anything about the evolution of these

perturbations, that grow as exp[X(q)  t]. In the case that the oscillators are in a steady

state regime the more likely situation is that the system performs a transition to a

discrete periodic rotating wave solution [9], as predicted from symmetry arguments

[43]. This is what happens in the case of Lorenz systems coupled in a ring geometry

as it will be seen immediately below.

Numerical Results.

To confirm this theoretical study based on the linear stability of the global

synchronized state, numerical simulations of Eq. (3.2) have been performed. As

expected, it was observed that the synchronized chaotic state is stable if the size of

the ring is small enough [143],  e.g., N = 2 (see Fig. 3.14), while for a certain critical

number, N, = 3, an instability that destroys the uniform chaotic state occurs, leading

to a new behavior. In this new behavior (see Fig. 3.15), one actually observes an

approximate rotating wave in the sense that a given oscillator is advanced with respect

to the oscillator that is driving it by approximately l/N of a period, i.e., neighboring

oscillators exhibit a phase difference of l/3 in our case. Since the behavior of each

oscillator is periodic, this rotating wave will be called periodic rotating wave.

The frequency of this periodic rotating wave is larger than the frequency

corresponding to the average distance between peaks in the chaotic state that
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Figure 3.14: Temporal evolution of the variables xi, i = I,2 in a ring of N = 2 Lorenz
oscillators. The values of the parameters are the same as in Fig. 3.13.
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Figure 3.15: Temporal evolution of the variables xi, i = 1, . . . ,3 in a ring of iV = 3 Lorenz
oscillators. Compare the time scale of this figure with that of Fig. 3.14. The values of the
parameters are the same as in Fig. 3.13.

corresponds to an uncoupled Lorenz system2.. The feature of these rotating waves

being faster (at least one order of magnitude faster) than the behavior corresponding

to the uncoupled oscillators makes this behavior potentially very attractive. In the

context of CPGs it offers a dynamical intrinsic mechanism to generate a fast frequency

in the system. This mechanism also might be useful in the design of artificial systems

in which one wishes to incorporate this feature of a fast frequency to the system.

Recently, these fast periodic rotating waves have also been found in an

experimental setup consisting of unidirectionally coupled Lorenz oscillators [204].

2This fact can be noticed by comparing the time scale of Fig. 3.15 with the time scale of Fig.
3.14.



3.4.2 Rings of Chua’s Oscillators.

The same type of linear stability analysis discussed for the Lorenz case can be applied

here. Now a ring with N Chua’s oscillators is considered, where the oscillators are

coupled according to Eq. (3.3) and driving is introduced through the nonlinear

element in such a way that corresponds to a ring geometry [128, 144, 138].

xj =  (zj, yj9 zj) c a n  b e  w r i t t e n  a s ,

kj=Gj(xo,...9xN__l)  j=O,...9N-l (3.27)

where the function Gj is defined by

Gj(xo9..  * 9 xN-l) = (a[Yj - Xj - .f(Xj-l)], Xj - Yj + zj9 -PYj - rxj)9 (3.28)

being operations over the index j modulo N and

f(Xj_1)  = {bXj_1  + k(Ci - b)[lXj-1  + II - 15-l - 'II} ’ (3.29)

A linear analysis of small perturbations on the global synchronized  state, defined

by s = x0 = x1 = . . . = xN_~, yields a set of linear variational equations given by,

N - l

6Xj = C DiGj(xs9.. . 9 XN_l)ls  SXi j = 0,. . . 9 N - 1 (3.30)
i=O

where Sxj = xj -s and components of s are (x,(t), yg(t), x3(t)). Since a ring geometry

is considered, the functions Gj are shift-invariant (see Eq. (3.15)). For this reason,

all the derivatives DiGj (x0, . . . 9 xN_1) Is can be expressed in terms of derivatives of

Go(xo9.. . 9 xN_1) Is. The result is

N - l

6Xj = C Di-jGe(xo,.  . . ,XN_l)ls  6Xi j = 0,. . . 9 N - 1, (3.31)
i=O

which can be placed in the form of the discrete convolution

N - l

S;= CHj-i  6xi9 j=O,...,N-1.
i=O

where

{Hi)zir  = {DoGo]~,  D~-lGols,  DN-zGoI~~  . * * 9 DlGoIs}.

(3.32)

(3.33)



This discrete circular convolution can be also represented by the equation

(3.34)

where the structure of the terms is as follows,

I$,= (-- :- 1), HI= (-“8’“‘) ; ;), H2=...=HN-1=03x3.

(3.35)

The coupled problem for the N oscillators of dimension m can be formally decoupled

by means of the Discrete Fourier Transform technique to yield a matrix that has N

blocks with dimension 3 x 3 (as it has been done for the Lorenz case)

( *fII)= (‘i “I ;y !I).( ,“‘;) (3.36)

where the structure of each block is the following,

c(k) =

(

--a[1 +  f’(zs) ek] o 0
1
0 1; :T )

(3.37)

being ek = exp(i 27r k/N) and k = 0,. . . , (N - 1) the Fourier modes of the system.

The Fourier mode Ic = 0 represents the synchronized state, and the matrix C(O)

is the same as that of an isolated Chua’s circuit. Thus, since the uncoupled Chua’s

circuits for the considered values of the parameters and initial conditions (different

for each oscillator) are in a chaotic regime, the nature of the synchronized state will

be chaotic as well. The other N - 1 matrices allow to determine the stability of

the synchronization  manifold against transverse perturbations [94] in terms of the

corresponding transverse Lyapunov exponents. The Lyapunov exponents are used to

analyze the stability of the system, the same as in the Lorenz case, since again the

Cck) matrices have nonconstant, chaotically varying coefficients, namely f’(z).

The highest transverse Lyapunov exponent function plotted as a function of the

reduced wave number, X(q), for this scheme of Chua’s oscillators (see Fig. 3.16) has



a very similar form to the one obtained for the Lorenz case. As then, this function

is symmetric with respect to the line q = l/2, since the eigenvalues of the Cc”)  and

CN-“)  are complex conjugate one to each other. On the other hand, once again

there exists a certain number of oscillators in the ring, N,, for which the uniform

synchronized  chaotic state becomes unstable since X(q = 0) > 0 and X(q = l/2) < 0.

In particular, for (a, p, y, a, b) = (10,14.87,0.06,  -1.27, -0.68) this critical number is

N, = 5, which corresponds to qc = 0.21.

h (9)
0 . 8

0 . 6

-0 .4
0 . 2  0 . 4  0 .6  0 .8

4

Figure 3.16: Representation of the highest Lyapunov exponent X(q) as a function
of q = k/N. The circles indicate the highest transverse Lyapunov exponent for the
corresponding transverse Fourier modes in a ring of N = 4 Chua’s oscillators, whereas
the squares indicate the same for a ring of N = 5. The values of the parameters are
(c&y,a, b) = (10,14.87,0.06,  -1.27, -0.68).

Symmetry also determines the behavior of the ring after the onset of the

instability. We have seen that the eigenvalues of the matrices C(“) and C(N-“) are

complex conjugate. In order to have qualitative information about the real or complex

character of the eigenvalues we can employ the same averaging method used for the

Lorenz case. Remember that in that method one replaces the instantaneous time-

dependent coefficients of the matrices C@) by their average values when t + 00. As
in the Lorenz case, the eigenvalues are complex and the instability will occur through

a Hopf bifurcation because the presence of the ek terms in Eq. (3.37) implies that

half of the Fourier modes are complex conjugate to the other half. This means that



when a given mode crosses the instability threshold there will be another mode that

also exhibits the same type of crossing. The result is immediate: a Hopf bifurcation

occurs, implying the appearance of a discrete rotating wave, in which neighboring

oscillators exhibit the reported phase difference.

The theoretical analysis that gives rise to the function X(q) as well as numerical

simulations and experiments performed with the electronic setup agree in that the

uniform synchronized state is stable when the number of units N in the ring is low

enough, and in that starting from a certain size N, the synchronized state loses

stability.

Numerical Results.

Figure 3.17 shows numerical results corresponding to a ring of N = 4 Chua’s

oscillators, for which the chaotic synchronized solution is still stable, while Fig. 3.18

presents numerical results for N = N, = 5, size for which the uniform synchronized

state of the ring becomes unstable. What can be observed is again a rotating wave,

in the sense that a given oscillator is advanced with respect to the previous one by

approximately l/N of a period, i.e., l/5 in our case. Notice that now the concept

of a period cannot be defined in a unique way since the behavior of each oscillator is

chaotic and the distances between peaks vary chaotically. However, one can define the

concept of time shift, that, when optimum, would make the peaks almost coincide,

without paying attention to the different height of these peaks. Thus, looking at

Fig. 3.18, which contains the representation of the variables ~1,. . . ,x5 for a ring

of N = 5 Chua’s circuits, one can note that the optimum delay r is very close to

l/5 of the period, as predicted by the theoretical analysis. Regarding the behavior

of larger rings, it has been found that the chaotic rotating-wave behavior occurs

for rings with N = 5 and N = 6 for the parameters reported up to now, that is,

(o,p,y,a,b)  = (10,14.87,0.06, -1.27, -0.68). For these values of the parameters,

when N 2 7 the ring becomes unstable and the variables of the system explode in an

oscillatory fashion. Thus, the observed behavior is that the system remains confined

to a neighborhood of the synchronized state for 5 > N 2 6, while the instability

dominates the behavior of the system for larger sizes of the ring.

Regarding the dependence of the stability of the ring on the parameters, for
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Figure 3.17: Temporal evolution of the variable z of two contiguous oscillator8 in a ring of
N = 4 Chua’s oscillators. The values of the parameters are the same as in Fig. 3.16.
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Figure 3.18: Temporal evolution of the variables zi, i = 1,. . . ,5 in a ring of N = 5 Chua’s
oscillators. The values of the parameters are the same as in Fig. 3.16 and Fig. 3.17. The
upper plot show8 the chaotic rotating wave structure that arises in the ring. The lower plot
is a zoom that allows to observe the time shift between contiguous oscillators. The two
solid lines correspond to ~1 and 22, the dashed line to ~3, the dashed-dotted line to 24 and
the dotted one to ~5.



(a, ,0, y, a, b) = (10,14.87,0.06,  - 1.27, -0.68) one has that rings up to N,,, = 4 are

stable in the chaotic uniform state. By varying y, while keeping fixed the rest of

parameters it can be seen that this is true while y 2 0.15, while for y > 0.15 the

five-membered ring is stable (N,,, = 5). One cannot consider too high values for

y, because at some point (y > 0.20 for the parameters considered here), the Chua’s

circuit is no longer the usual double-scroll attractor. Thus, if one wishes to obtain

stable N-membered rings it is necessary to vary any other parameter, such that it

changes the highest eigenvalue of C(l) in Eq. (3.37). One would suspect that those

in the diagonal will have the highest effect. In particular, a six-membered ring has

been stabilized for Q = 12 and y = 0.2. Table 3.1 summarizes results described so

far.

Table 3.1: Critical number of chaotic Chua’s circuits in a ring, Nmae,  that supports chaotic
(uniform) synchronization.

Experimental Results.

The numerical results discussed above have been corroborated by the experiments

carried out using the setup described in Section 3.2.2. The values of the components

of the oscillators chosen for the setup described in that section, correspond to the

adimesional set of values (a,@,~,  a, b) = (10,12.1,0.22, -1.26, -0.79). Figure 3.19

represents the highest transverse Lyapunov exponent as a function of Q = k/N for

such adimensional set of values. It can be expected that now synchronization among

circuits is obtained when N = 5 while for N = 6 a chaotic rotating wave develops in

the system.

Figure 3.20 presents the synchronization phenomenon obtained experimentally

for a ring of five oscillators. In such figure, the temporal evolution of the voltage

at the capacitor Cl for two oscillators has been recorded. To see more clearly the

synchronization effect we can resort to a representation of the voltage at the capacitor

Ci of one circuit of the ring versus the same magnitude of another different circuit
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Figure 3.19: Representation of the highest Lyapunov exponent X(q) as a function
o f  q = k/N. The circles indicate the highest tranverse Lyapunov exponent for the
corresponding transverse Fourier modes in a ring of N = 5 Chua’s oscillators, whereas
the squares indicate the same for a ring of N = 6. The values of the parameters are
(o,@y,u,b)  = (10,12.1,0.22,  -1.26, -0.79).

(see Fig. 3.21),  which shows a straight line with slope of forty-five degrees. Since

the temporal evolution of the Fourier mode k = 0 is determined by the matrix C(O),

which is identical to the Jacobian matrix that governs the evolution of an isolated

Chua’s oscillator, the behavior of the ring in synchronized  state will be the same as

that of an isolated Chua’s oscillator, that is, the typical double-scroll represented in

Fig. 3.22.

Figure 3.20: Synchronization  among chaotic circuits obtained experimentally for a ring of
five unidirectionally coupled Chua’s circuits. The temporal evolution of the voltage at the
capacitor Cl has been represented for two circuits.



Figure 3.21: Representation of the voltage through capacitor Ci corresponding to one
circuit of a ring of five oscillators versus the same quantity for another circuit. This plot
indicates synchronization among the circuits.

Figure 3.22: Representation of the voltage through capacitor Ci versus the voltage through
capacitor Cz for a Chua’s circuit of a ring of five synchronized oscillators. The typical
double-scroll characteristic of an isolated chaotic circuit has been obtained.

Figure 3.23 represents a rotating wave obtained experimentally for a ring of six

oscillators. In particular, the temporal evolution of the voltage at the capacitor

Ci for four contiguous circuits is shown in that figure. This allows to see more

clearly the fingerprint of these waves: they are waves with an aperiodic modulated

envelope, indicating the superposition of the modes k = 0 and k = 1. This envelope

includes waves with an approximate phase relationship of 27r/N (characteristic of

the mode 1), being N the number of oscillators (N = 6 in our case). Figure 3.24

contains a representation of the voltages across capacitor Cz corresponding to two

contiguous circuits in the same ring, where the typical straight line characteristic of

synchronization appears broadened as a consequence of the phase shift. Figure 3.25

shows the voltage across capacitor Cl versus the voltage across capacitor C,, both

corresponding to the same circuit. Notice that the resulting chaotic behavior is not

the same as the one of an isolated chaotic Chua’s oscillator.



Figure 3.23: Chaotic rotating wave obtained experimentally for a ring of six
unidirectionally coupled Chua’s circuits. Representation of the time series of the voltage at
the capacitor Cr in four contiguous circuits.
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Figure 3.24: Representation of voltages at capacitors Cz in two contiguous circuits, one as
a function of the other, for a chaotic rotating wave obtained experimentally with six Chua’s
circuits.

Figure 3.25: Phase plane of the two voltages at both capacitors of one circuit for a chaotic
rotating wave obtained experimentally with six Chua’s circuits.



3.4.3 Interaction between two Rings of Chua’s Oscillators.

As mentioned in the numerical and experimental setup, two rings of N Chua’s

ocillators each one have also been considered [140].  These rings have been coupled in

the way described by Eq. (3.5), that in compact form can be written as

kj=Gj(x,,  ,..., x& j=O ,..., N - l (3.38)

where xj = (xy, xi) = ($, yf, zf, $, $, .#) and the form of function Gj depends on

the type of coupling: parallel or antiparallel.

As in the case of only one ring, a linear stability analysis of the
system described above around the globally synchronized  state, now s =

(Q), Y&L &), z&), Y$), Q)), has been carried out. This analysis starts by

performing an expansion of Eq. (3.5) around this state and keeping only linear

terms. One obtains a system of N coupled differential equations for every 6xj =

(bxjo,  sx;, = (62j0, ~y$6zj,  s+, 6y$ SZ,!) with a quite sparse structure. In particular,

two different cases will be analyzed in this section: parallel and antiparallel coupling

(see Fig. 3.26), focusing our attention on the interaction between the chaotic rotating

waves introduced in the previous section.

(a)

Figure 3.26: Scheme of parallel (a) and antiparallel (b) coupling.



Parallel Coupling.

In the case of parallel coupling the functions Gj that represent the dynamical

evolution of the variable xj are defined by

Gj(xo,  . . . , x~-~) = ((Y[Yjo - xy - f(x;_,)] + D(xi - xg>, xj” - yj” + z;,
-P Yj" - y z;, a[$ - xj - f(xj_,)] + D(x!j  - Xj)’
2; - y; + z;, -py; - yxjl) (3.39)

where the index j is mod N. Since these functions are shift-invariant the evolution

of the perturbations around the synchronized  state can be written as in Eq. (3.34),

where now the matrices are

Ho =

HI =

-a-D o! 0 D 00
1 -1 1 0 0 0
0 -p -y 0 0 0
D 0 0 - a - D Q 0
0 0 0 1 -1 1

0 0 0  0 -P -7
-0!f’(x,)00 0 00

0 00 0 00
0 00 0 00
0 0 0 -af’(x,) 0 0
0 00 0 00
0 00 0 00

I 9

(3.40)

Hz = . . . = HN-l = 0cx6.

Matrix H can be put in block-diagonal form by applying a DFT, as it was done for

a single ring of Chua’s cells. The resulting system is

q(O)
rlwI(: 1. (3.41)

$A

where  ~(~1  = Cr=i’ 6xjeV, are vectors of six components and matrices C@) are

6 x 6 dimensional, with the block circulant structure

(3.42)



being

Qf) =
--~[l  + f/(x8) ek] - D Q! 0

1
0

) and Qr)= (! i !) . (3.43)

In this way, the initial problem has been brought to 6 x 6 block-diagonal form

by applying a DFT. Besides, the components of each vector r]@)  can also be divided

in two different vectors: @’ containing the three first components of @I, and [y’

containing the three last ones

(3.44)

The dynamical evolution of each new vector can be represented by the following

convolutional sum

i3!I”) = 5 Qpi ,$’ j = (),I. (3.45)
i=O

Applying a DFT to the sequence { Qf’ , Q I”’ } and to the sequence {#’ , @‘}, the

transformed variational equations can be written as

where the structure of each 3 x 3 block is the following,

--a[1 + f’(z,)ek] + D (e, - 1)
D&P) -- 1

’
(3.47)

0

with ek = exp(i27rIc/N)  and e, = exp(irm),  being Ic = 0,. . . , (IV - 1) and m = 0,l

the indices of Fourier modes of the system, with N the number of oscillators of each

ring. Note that the terms u @lrn) have been obtained after applying twice the Discrete

Fourier Transform (with respect to the indices j = 0,. . . (N - 1) and i = 0,l) to Sxj,

resulting in the following expression

(3.48)

The (k, m) = (0,0) Fourier mode represents the uniform global chaotic synchronized

state of the coupled system and the stability of this state can be characterized by

analyzing the transverse Lyapunov spectrum. Global (double-scroll) synchronization

occurs only if all the Transverse Lyapunov Exponents (TLEs)  are negative. It is



important to notice from Eq. (3.47) that the Jacobian matrices corresponding to

the Fourier modes (AY, 0) are identical as the ones corresponding to the modes Ic of

a single ring (see Section 3.4.2), while the Jacobian matrices corresponding to the

modes (k, 1) take into account the coupling between rings.

Figure 3.27 shows the highest TLEs associated with Fourier modes (Ic, 0) and

(k, 1) for two different values of the coupling coefficient D: the plot on the left

for D = 2.3 and the plot on the right for D = 4. In both plots the upper curve

represents the highest TLEs for the modes (k, 0) while the lower curve represents the

one corresponding to (k, 1).
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Figure 3.27: Representation of the highest Transverse Lyapunov Exponent, X as a function
of q = Ic/iV (being N the total number of Chua’s circuits in each ring and Ic = 0,. . . , iV - 1
the Fourier modes associated with the size of the ring) for two diffusively coupled rings with
the same sense of driving (parallel coupling): (a) D = 2.3 and (b) D = 4. The upper curve
in both plots represents the highest TLE for the modes (Ic, m) = (Ic, 0), which corresponds
with the case of a single ring without coupling, while the lower curve represents the highest
TLE for the modes (Ic, m) = (Ic, l), which depend on the coupling between the two rings.
The squares represent the TLEs  when considering N = 6.

Two facts can be appreciated from Fig. 3.27(a). On the one hand, the fact that

for N = 6, the (1,0) mode is unstable, which corresponds to a chaotic rotating wave

(recall Fig. 3.23), since, now, the circuits are not synchronized  inside each ring. On

the other hand, we can observe another instability in the mode (0, l), what indicates

that for D = 2.3 there are not synchronization between rings. Thus, for N = 6

one must expect to observe two desynchronized  chaotic rotating waves, each one in

a different ring. Fig. 3.27(b) represents the TLEs for a greater value of the coupling

coefficient D. We can observe that now all the TLEs associated to the Fourier modes



(k, 1) are negative, which indicates synchronization between the two rings. Therefore,

for N = 6 linear theory predicts synchronization between the two chaotic rotating

waves. Notice that for this value of the coupling coefficient and a smaller number

of elements in each ring, global (double-scroll) synchronization is expected, since all

the TLEs are negative.

From Fig. 3.27 it is also apparent that mode (0,l) moves from positive to negative

values as the coupling coefficient D grows. Thus, we can study the evolution of this

mode as a function of D to find out when the transition from positive to negative

values appears. Figure 3.28 shows that this happens approximately for D m 2.5.

Figure 3.28: Representation of the highest TLE for the mode (k, m) = (0,l) versus the
coupling coefficient D. The values of the parameters for each circuit in Eq. (3.5) are:
(o,p,y,a, b) = (10,12.1,0.22,  -1.26, -0.79). Notice that X(D) = 0 when D M 2.5.

Therefore, for weak coupling between rings (high values of R,, low values of D),

rotating waves do not see each other, and the observed behavior corresponds to

non-interacting waves. Figure 3.29 shows these two desynchronized  chaotic rotating

waves, each one corresponding to a different ring. On the other hand, if the coupling is

strong enough (low values of R,, high values of D) these two waves are synchronized,

as shown in Fig. 3.30.
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Figure 3.29: Representation of two non synchronized chaotic rotating waves, obtained for
weak parallel coupling (D = 2) between two rings of Chua’s oscillators. The values of the
parameters for each circuit in Eq. (3.5) are: (Q, @, 7, a, b) = (10,12-l,  0.22, - 1.26, -0.79).
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Figure 3.30: Synchronization  between two chaotic rotating waves, obtained for strong
parallel coupling (D = 6) between two rings of Chua’s oscillators. The values of the
parameters for each circuit in Eq. (3.5) are the same as in Fig. 3.29.

Antiparallel Coupling.

In the case of antiparallel coupling the functions Gj that represent the dynamical

evolution of the variable xj are defined by

Gj(Xo, . . . Al-1) = (a[yj - x; - f(xj”_,)]  + 0(x; - xi), xj” - y; + z;,
-P Y3"  - y z;, a[yj - x; - f(x;+l)] + D(x!j - xi),
x; - y; + z;, -p yj' - ynjl) (3.49)

where the index j is mod N. Since these functions are shift-invariant, the evolution

of the perturbations around the synchronized state can be written as in Eq. (3.34),



where now the matrices are

-o-D a 0 D 0 0
1 - 1  1 0 0 0

Ho 0 0 0 0= -p -yD 0 0 - a - D a 0 1 ’

Hi =

HN-i =

0 0 0 1
0 0 0 0

-a!f’(ZJ  0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

000 0 00
000 0 00
000 0 00
0 0 0 -Qf’(Z,) 0 0
000 0 00
000 0 00

-1 1

-P -7 I

. . ., Hz= = HN_2 = 0sX6

(3.50)

The main difference with respect to the case of parallel coupling is that now it is

not possible to bring the problem to a block-diagonal form, at least in an obvious way,

to yield a 3 x 3 decoupled problem (that runs over k = 0, . . . , (N - 1) and m = 0,l).

In the present situation it is possible to apply once a DFT but the simplification that

one can attain is, at most, to a 6 x 6 problem in which the two cells of different rings

that are resistively coupled appear together. The structure of the 6 x 6 problem is,

analogously to the case of parallel coupling, of the form

p) = c(k) p (3.51)

where

and

N - l
p = c (jxjev (3.52)

j=o

(3.53)

being Qf’ and Qy’ the same 3 x 3 matrices already described in the parallel case

(see Eq (3 43)))  and Qr’+ the complex conjugate of Qr’.. .



The characterization  of the instability has been

coupling coefficient D (corresponding to the coupling resistance R,). Figure 3.31

shows the dependence on the coupling coefficient, D, of the highest Lyapunov

exponent, X(D), corresponding to the Fourier modes k = 0,. . . , N - 1 when N = 6.

Actually, the curves corresponding to the transverse Fourier modes k = 4,5 are

not plotted because they are the same as those corresponding to modes k = 2,1,

respectively.
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Figure 3.31: Dependence of the highest Lyapunov Exponent X(D), corresponding to the
modes k = 0,. . . ,3 (for N = S), on the coupling (diffusion) coefficient D between rings
with opposite sense of driving. The inset shows the transition from positive to negative of
the TLE corresponding to mode k = 1 for D = 0.17. Set of parameters as in Fig. 3.27.
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Notice that for D > 0.17 all transverse Lyapunov exponents are negative and,

therefore, the Fourier mode k = 0 is stable. Using the properties of the DFT  [163],

this means that 6x0 = 6x1 = . . . = SXN-~ = c(t), that is,

It is apparent from Eq. (3.54) that two possible situations exist:

l co(t) # c’(t): all the circuits in

synchronization  between rings.

each ring are synchronized  but there is no



“cl

l c”(t) = cl(t):  all the circuits in the whole system are synchonized.

The fact that the Fourier mode k = 0 is stable for D 2 0.17, implies that the

system will evolve either to the first or to the second of the situations mentioned

above. Reaching one or the other will depend on the particular value of the coupling

coefficient. To know when global synchronization between all oscillators can be

achieved we can resort to the properties of the matrices Cc”). Although these matrices

are not circulant for all possible values of k, it is important to realize that the matrix

C(O)  shows a circulant structure, since Qr’ and Qr’+ are identical. This allows to

apply a second DFT to the sequence { Qr’, Qy’} and to the sequence {[;I, ry’}

(defined as in the parallel case, see Eq. (3.44)), which leads to

i/&m) = D&d v(o>d (3.55)

where m = 0,l and

-a[1 + f’(xs)] + D (e, - 1) Q 0
D(o>“) = 1

r; & .
(3.56)

0

These matrices are the same as the corresponding to the parallel coupling case, so

the problem analysis at this point is also the same. In particular, the matrix D(‘y’)
coincides with the Jacobian matrix of an isolated Chua’s circuit. Therefore, when

all the Lyapunov exponents associated to k 2 1 and to the mode (0, m) = (0,l)

are negative, all oscillators in the system will be synchronized  exhibiting the typical

double-scroll attractor. Recall that Fig. 3.28 showed the dependence of the highest

Lyapunov exponent corresponding to the mode (0,l) on the value of the coupling

coefficient D. There, a transition from positive to negative values of the Lyapunov

exponent appeared when D M 2.5.

The above argument indicates that in the case of antiparallel coupling the range

of possible behaviors is richer than in the case of parallel coupling, since we can

distinguish three possible different situations depending on the value of the coupling

coefficient D:

l For weak coupling, D < 0.17, there is no interaction between rings and each

ring behaves as if it was isolated (see Fig. 3.32). Thus, for N = 6, we observe

two desynchronized  rotating waves, one in each ring.



l For intermediate coupling, 0.17 < D < 2.5, synchronization is observed inside

each ring but not between them. Figure 3.33 shows the evolution of the system

for D = 2.4, where all the circuits within each ring are synchronized. Both

rings are quite correlated since the value of the coupling coefficient is very close

to the range of strong coupling.

l For strong coupling, all

in double-scroll regime.

D = 2.6.

the oscillators in the two rings become synchronized

Figure 3.34 represents the evolution of both rings for
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Figure 3.32: Representation of two non synchronized chaotic rotating waves, obtained for
weak antiparallel coupling (D = 0.1) between two rings of Chua’s oscillators. The values
of the parameters for each circuit are: (Q, p, y, a, b) = (10,12.1,0.22,  -1.26, -0.79).
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Figure 3.33: Representation of the temporal evolution of two rings of Chua’s oscillators
with intermediate antiparallel coupling (D = 2.4). The values of the parameters for each
circuit are the same as in Fig. 3.32.
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Figure 3.34: Representation of the temporal evolution of two rings of Chua’s oscillators
with strong antiparallel coupling (D = 2.6). The values of the parameters for each circuit
are the same as in Fig. 3.32.

It is remarkable that transverse coupling is able to overcome the instability

induced in a single ring by driving coupling, what has also been obtained with the

experimental setup described in Section 3.2.2. Thus, Fig. 3.35 represents the phase

portrait for a given circuit of the system, that is, the voltage at capacitor C, versus

the voltage at capacitor C1 when considering R, = 10, showing the classical double-

scroll chaotic attractor. Besides, Fig. 3.36 and Fig. 3.37 represent the voltages

across capacitor C2 corresponding to two contiguous circuits in the same ring and to

two directly coupled circuits of different rings, respectively. Synchronized  behavior

of all circuits of the system can be deduced from such figures, in which the y = x

characteristic behavior is observed, although with some thickness due to the fact that

Figure 3.35: Phase plane of two voltages at both capacitors of one circuit of the
experimental setup consisting of two antiparallel coupled rings, each one with 6 circuits,
when considering Rc = 10. This circuit exhibits the classical Chua’s double-scroll chaotic
attractor.
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Figure 3.36: Representation of the voltages at capacitor Cz for two contiguous circuits of
a given ring for the same experimental setup as in Fig. 3.35. Synchronization among the
circuits of the same ring is shown.

Figure 3.37: Representation of the voltages at capacitor Cz for two diffusively coupled
circuits, one from each ring, for the same experimental setup as in Fig. 3.35.
Synchronization between directly coupled circuits of different rings is shown.

Another interesting effect has been obtained in the experimental setup for

N = 6. In particular, for R, = 27R each ring experiments some kind of on-off

intermittency between the double-scroll and the chaotic rotating wave behavior. The

fact that the uniform synchronized  chaotic state in each ring is stable implies that

the corresponding transverse Lyapunov spectrum must be negative [94]. However,

even when the largest transverse exponent is negative (although close to zero)

interesting phenomena may occur [177],, as during short periods of time it may

become positive (this exponent is guaranteed to be negative only in the asymptotic

limit). In particular, the behavior that we get in our system is very close to an on-

off intermittency [95], that in our case manifests in that the double-scroll attractor

appears to be alive and breath. The system is subject to perturbations, that,

notwithstanding, are not able to induce a transition to a different behavior. This



type of situation can be observed in Fig. 3.38 and Fig. 3.39. Notice the coexistence

in time of both kinds of attractors, namely the doublescroll and the rotating wave

shown in Fig. 3.35 and Fig. 3.25. The most striking aspect of this behavior is that

typical lifetimes of each of the two transient states may be up to a few minutes, what

is quite uncommon in this type of electronic analog circuits, with usual characteristic

times of the order of the milliseconds. However, the transition itself is very fast.

Moreover, the blurring in the characteristic y = x line shown in Fig. 3.36 implies that

the double-scroll synchronized state is contaminated by perturbations, that resemble

the characteristic Lissajoux-type figure of a chaotic rotating wave.

Figure 3.38: Phase plane of two voltages at both capacitors of one circuit showing
the transition from a double-scroll chaotic attractor to a chaotic rotating wave. This
experimental image has been obtained for antiparallel coupling when considering 6 circuits
in each ring and with R, = 270.  Notice that this captured image is a genuine effect and
not a technical feature of the oscilloscope (see the label RUN in the right-top of the panel).

Figure 3.39: Representation of the voltages at the capacitor Cz for two contiguous circuits
of a given ring for the same experimental setup as in Fig. 3.38. A blur of the characteristic
y = z line is shown. This implies that the double-scroll synchronized state inside the ring
is contaminated by the chaotic rotating wave state.
This implies that the double-scroll synchronized state inside the ring is contaminated
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Comparison between Parallel and Antiparallel Coupling.

In the previous sections we have carried out an study of the behavior of coupled rings

of cells with chaotic behavior. There is a lot of interest in this type of systems in

neurobiology, as well as in technological applications like robotics. In particular, in

the so-called CPGs (Central Pattern Generators), that are basically rings of neurons

capable of autonomous rhythmic activity in response to a suitable stimulus. However,

the direct physiological evidence of these structures is quite scarce and, thus, one may

expect that these CPGs are coupled and intertwined in complicated arrangements

that may affect to their dynamical behavior. In the previous sections, we analyze

the simplest situation involving the interaction of these CPG-like structures, namely,

the case in which two of such rings interact. We consider the case in which the local

dynamics of the cells is chaotic.

As it has been shown, this fact ensures that the uniform synchronized state of the

rings cannot be stable for an arbitrary number of cells and/or coupling coefficients.

An instability in this state must appear for some values of the parameters. Such

instabilities lead to spatio-temporal (discrete) structures that travel over the assembly

of cells. Transverse coupling between the rings guarantees interaction between the

structures that appear within each ring. Coupling within each ring is unidirectional

in our study, but there are two possibilities in the way of coupling the two rings,

depending on the sense of driving within each one: parallel and antiparallel. The

result of this study is that the observed behavior in these two cases is different,

particularly in the region of intermediate and strong coupling.

Thus, in the case of parallel coupling there are two definite behaviors: if coupling is

weak one has two desynchronized chaotic rotating waves, while if coupling is strong

these two waves are synchronized between the two rings. Instead, in the case of

antiparallel coupling the situation is richer: for weak coupling one has (logically) the

same behavior, i.e. two desynchronized rings. For intermediate coupling, all the cells

inside each ring become synchronized but there is no synchronization  between rings.

And, for strong coupling all the cells in the two rings are synchronized, being their

behavior like that of an isolated cell: a double scroll. Thus, transverse coupling is

able to overcome the instability induced in a single ring by driving coupling.
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3.5 Conclusions.

This chapter has been devoted to the study of the stability of the global synchronized

state in open linear arrays and rings of identical chaotic oscillators. Numerical

simulations have been carried out with assemblies of Lorenz oscillators and Chua’s

oscillators, whereas experiments have been done in a board of Chua’s oscillators.

In all cases unidirectional coupling between circuits is set by the driving method

of Giiemez and Matias, in such a way that synchronization can be achieved when

considering two oscillators.

Synchronization  of chaotic oscillators arranged in an open linear array has been

studied first. It has been found both experimentally and numerically that the

oscillators synchronize in a consecutive way as a synchronization wave with constant

velocity spreads through the array. We have also supplied a theoretical analysis

that explains the linear relationship between the time required for all oscillators to

synchronize and the number of elements in the array. It has been shown that the

velocity of the synchronization wave depends linearly on the highest of the Lyapunov

exponents corresponding to transverse perturbations to the synchronization manifold

of two consecutive oscillators.

The appearance of synchronization in circular geometries (or rings) of chaotic

oscillators has also been studied. Numerical simulations and experimental results

show that synchronization cannot be achieved for an arbitrary number of elements

in the ring, but there exists an upper bound in the size of the ring above which

an instability in the global synchronized state arises. This upper bound can be

theoretically obtained by means of a linear stability analysis around the uniform

synchronized state. It has been shown that, beyond this instability, some stable

spatio-temporal structures (periodic and chaotic rotating waves) can arise from a

symmetric Hopf bifurcation, such that neighboring oscillators exhibit a phase lag

of approximately l/N of a period (being N the number of oscillators in the ring),

characteristic of the first Fourier mode transverse to the synchronization manifold

that becomes unstable.

Finally, we have investigated the interaction between chaotic rotating wave

structures when two rings are diffusively coupled cell-toocell. Depending on the sense

of driving within each ring, two different configurations have been analyzed: parallel



and antiparallel coupling. In the case of parallel coupling two definite behaviors have

been obtained: when coupling is weak two desynchronized chaotic rotating waves are

observed, each one in a different ring, and when coupling is strong these two waves

become synchronized. Instead, in the case of antiparallel coupling the situation is

richer: for weak coupling the same behavior is obtained, namely, two desynchronized

rotating waves. For intermediate coupling, the rotating wave structure vanishes and

all oscillators inside each ring become synchronized but there is no synchronization

between different rings. And, for strong coupling all the oscillators synchronize

exhibiting the behavior of an isolated chaotic oscillator: a double-scroll.



Chapter 4

Chaos in Communications.

4.1 Why Chaos in Communications?.

The appearance in the year of 1990 of two seminal papers [174,  166] involving

fundamentals of chaotic systems, generated a tremendous amount of interest and

work with subsequent applications in synchronization [174] and control [166] of

chaos. In particular, the peculiar features of chaotic systems well explored in

Ref. [174] (synchronization capability) and in Ref. [166] (sensitivity to initial

condition), opened up a whole new field for using chaotic signals as information

carriers [45, 46, 88, 210, 179, 110, 22]. It is currently accepted that chaotic systems

provide a rich mechanism for signal design and generation, with promising potential

applications to communications and signal processing. Since chaotic signals are

typically broadband, noiselike and difficult to predict they can be used in various

contexts for masking information-bearing waveforms. They can also be used as

modulating waveforms in spread spectrum systems, like Code Division Multiple

Access (CDMA) that is becoming very popular in many fields of telecommunication.

Two fundamental characteristics of chaos in physical systems are the complexity

of the dynamics and the sensitivity of the time evolution to small perturbations. The

sensitivity of chaos to small perturbations has been seen for a long time as merely a

barrier to prediction, and not as a useful property. Major developments in the area

of controlling chaos using small perturbations have proved otherwise: the sensitivity

to small perturbations exhibited by chaotic systems allows to control them using
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electrical signals with a power far below the one produced by the chaotic system

itself. Thus, the complexity of chaos and its sensitivity to small perturbations can be

combined harmoniously by using the sensitivity to control (and take advantage of) the

complexity. As a consequence, it is currently recognized by many engineers that the

fact that chaos provides complex behavior from simple systems can be exploited to

obtain technological advantages over conventional means for information transmission

4.2 Chaos in Communications.

Several approaches have been proposed for communications using chaotic systems.

Most of these methods are based on the principle of chaotic masking, where the

message signal is added to a much more powerful chaotic carrier generated by the

transmitting system. Then, it is recovered at the receiver by regenerating the carrier

through synchronization  and substracting  it out of the received signal [45, 46, 236].

As examples, we can mention the communication schemes proposed by Oppenheim

et al. [164],  Kocarev et al. [109], Parlitz et al. [170],  Cuomo and Oppenheim [45] and

Halle et al. [85], where the transmitter works as the driving system, the receiver works

as the response system and a subvector xp = (xi, x2,. . . , xp) of the state vector x is

transmitted causing the receiver to synchronize  with the transmitter. This is shown

in Fig. 4.1. In practice, it would be desirable to have p, the number of components

of xp, as small as possible, so less of the state needs to be transmitted.

Figure 4.1: Communication system based on synchronizing  master-slave configuration.

Many chaotic systems [13, 25, 217, 39, 161, 158] can be used to generate

a communication system in a master-slave configuration using solely x1 as the

transmitted signal. There are many possible variations but let us consider, as an

example, a transmitted signal of the form s(t) = xl(t) + m(t), where m(t)  is the

information-bearing signal and xi(t) is the chaotic carrier. For masking, it is assumed

that the power level of m(t) is significantly lower than that of xl(t).  Thus, if the



receiver has synchronized  with s(t) as the drive, then yl(t) z xl(t) and, consequently,

m(t) can be recovered as e(t) = s(t) - yl(t) [45, 46, 109] (see Fig. 4.2).

Xlkx2

x3

Figure 4.2: Chaotic signal masking system.

This type of communications schemes is based on Pecora-Carroll synchronization.

The receiver’s main elements are the cascaded slave subsystems that are necessary to

recover the information signal added to the chaotic carrier. However, in the context

of chaotic masking, the idea of adding a chaotic signal to an information signal

[45, 46, 109, 131] is known to suffer from certain disadvantages. The main drawback

is the requirement that the information signal power level be, at least, 30 dB below

the power level of the chaotic carrier. The consequence is that it is difficult to ensure

a correct detection when the noise power at the receiver is the same as, or higher

than, the information signal power. Since this signal is assumed to be fairly weak

(otherwise, there would be no masking) this troublesome situation is likely to be

usual in practice.

A more general approach is to use the message signal as a driver for the

transmitting system, so that the message becomes a dynamical perturbation rather

than an additive one [ll0, 171]. Now the information is injected into the dynamical

system constituting the transmitter and, thus, the transmitter is not autonomous

anymore, but driven by the information signal.

Another approach based on chaotic synchronization is to use the message signal

to modulate the parameters of the transmitting system [46, 56, 240]. The main idea

is to modulate a control parameter associated with the transmitter or driver using a

digital information-bearing waveform and transmit the resulting chaotic signal. At

the receiver, the coefficient modulation will produce a synchronization error that is

the difference between the received drive signal and the receiver’s regenerated drive



signal. Measuring this difference, an error-signal, ei(t), is obtained, the amplitude of

which depends on the modulation. Therefore, it is possible to detect the parameter

modulation in the transmitter by observing the fluctuations in ei(t).

This modulation/detecction process is illustrated in Fig. 4.3. Any coefficient

of the transmitter is modulated by the information-bearing waveform, m(t). This

information is propagated through the channel with the chaotic signal x\~) (t). The

noisy received signal r(t) = zlm)(t) + n(t) serves as the driving input to the receiver.

There, the modulation is detected by forming the difference between the received

noisy drive signal and the reconstructed drive signal, ei(t) = r(t) - yi(t). Let us

suppose the information signal is a binary valued bit stream, with a “1” representing

a coefficient mistmatch and a “0” representing no coefficient mismatch. If we assume

that the signal-to-noise ratio (SNR) of r(t) is large, the error signal ei(t) will exhibit

a relatively large average power (due to the parameter mismatch) during the time

period that a “1” is transmitted, whereas it will nearly vanish during the transmission

of a “0”, because perfect synchronization is achieved. Figure 4.4 illustrates the

relationship between the binary information waveform and the squared error signal,

e;(t). It is immediate to detect the information bits by low pass filtering ef(t) and

sampling the resulting signal (a “smooth” version of m(t)) at adequate time instants.

n (0

Figure 4.3: Chaotic communication system using parameter modulation.

Other approaches to use chaos for the purpose of communication include

controlling techniques to encode binary information by means of small perturbations

to the system trajectory [88,89,90,91].  The fact of controlling the system using direct

trajectory perturbations is slightly less involved than with parameter perturbations.

These controlling techniques have been applied to different chaotic oscillators, such

as the Rossler [90, 91], Chua [91, 88] and Lorenz [89, 90] systems. Since this is the

starting point for the ideas presented in the following chapters, it is interesting to



0

0 1 2 3 4 5 6 7 a 9 IO

2

21
"aI-

0 I I I I I I I I I I
0 1 2 3 4 5 6 7 a 9 10

Figure 4.4: Digital information waveform, m(t), and power of the synchronization  error,
e:(t), in a chaotic communication system using parameter modulation.

get some insight into the work carried out by Hayes and Grebogi [89, 90] to encode

binary information in the Lorenz attractor.

4.2.1 Encoding Technique by Hayes and Grebogi.

A chaotic oscillator, like the Lorenz system [126] for instance, can be controlled with

small trajectory perturbations that will make its trajectory follow a desired path

[89, 90]. The perturbations are small enough not to introduce significant changes in

the topological properties of the system, and still able to make the x((t) component

follow a prescribed sequence of ups and downs where each up corresponds to “1”

and each down corresponds to “0”.. The analog x(t) signal becomes a natural carrier

of digital information where any desired message can be encoded. A digital signal

can thus be produced directly at the transmission stage, with no need for subsequent

amplification. Because chaotic behavior occurs in simple systems, and because of the

extremely low power requirement of the control mechanism, the high-power device

can be simple and efficient, and all the control and guidance electronics can remain

at the microelectronic level. So far, it has been shown that applying simultaneously

small perturbations to two variables of the Lorenz system it is possible to guide its

trajectory to encode the desired binary information [89, 90].

For standard parameter values, ~7 = 10, R = 28 and b = 8/3, the Lorenz system

produces a chaotic attractor in a three-dimensional state space. The state point

(x, y, x) executes an apparently random dance, circling one lobe a few times, then



jumping to the other for a few cycles, then back. The binary information is carried

by the sequence of cycles on the two lobes. It is possible to label one lobe of the

attractor with the symbol 0 and the other one with the symbol 1. Then, every

time the system cycles on the 0 lobe, it generates a 0, and similarly for the 1 lobe.

Therefore, the sequence of cycles on the two lobes can be easily translated into a

sequence of bits. When the system is running freely, the sequence of lobe cycles

approximates a coin toss. When the x(t) scalar signal is observed, the binary digits

appear as a sequence of positive and negative spikes, the positive spikes representing

the 1s and the negative spikes the OS. In this sense, it is straightforward to understand

the signal x(t) as a carrier of digital symbols.

To explain this behavior in detail [90, 89] two surfaces of section given by the

half-planes y = fJb0 and ]z] > Jbo have been considered. The points

(z, y, x) = (f&E-Y), f&KY), R - 1) are the unstable fixed points, or foci of

the outward spiraling trajectories on either lobe. A projection of the Lorenz attractor

onto the z - y plane is shown in Fig. 4.5 where the two half-planes are represented

by two straight lines, labeled  0 and 1, respectively. These are the two branches of a

Poincare surface. In the x projection of the full state point, it can be seen that the

oscillations around the 0 and 1 attractor lobes correspond to negative and positive

maxima, or spikes, respectively (see Fig. 4.6). If this x projection x(t) is chosen

as the transmitted signal, then the message could be extracted by simply observing

the sequence of spikes in the waveform. Thus, the Lorenz system offers probably the

simplest example of how symbolic dynamics can be used to transmit a message.

Figure 4.5: Lorenz state trajectory projected onto the x-y plane. The two branches of the
Poincaré surface appear as half-lines and are labeled  with binary symbols 0 and 1.
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Figure 4.6: Temporal evolution of the variable x of the Lorenz system.

There exists a correspondence between the point where the state coordinate

(z, y, Z) crosses one of the Poincare surfaces and the n-bit symbol sequence, bl b2 . . . b,,
associated to the subsequent evolution of the system. Because the Lorenz equations

represent a flow that is highly dissipative and therefore strongly contracting along

the stable direction, the intersection of the attractor with each surface forms an

essentially one-dimensional arc (see Fig. 4.7 and Fig. 4.8). For this reason, the

future symbol evolution is determined well by a proper choice of a single magnitude.

If we define the two Poincare coordinates t = ]z] - dm and c = z - (R - 1)

as a normalization of the coordinates x and z, respectively, at the moment when the

Poincare surfaces are crossed, the distance along the one-dimensional arc between

(&C) and the fix point at the center  of the respective lobe can be written asfi d

x = c cos 8 + [sin 13, where 0 is the angle that the line segment makes with the x - y

plane. This magnitude x contains all useful information about the state coordinate at

the crossing point. Because absolute values are used in defining x, called generalized

Poincare coordinate, such magnitude can be used for both lobes of the attractor.

To determine how state-space crossing-points on the surfaces of section,

represented by the generalized Poincare coordinate x, are related to the subsequent

bit sequences generated after the crossing it is possible to resort to the binary fraction

n

r= c bi2-i (4.1)
i=l

associated to that sequence. The main contribution in [89, 90] is to show that the

binary fraction is actually a function of (<, S), i.e., there exists a coding function

c(x) such that c(x) = r = Cr=“=,  bi2-i. Furthermore, this function is invertible and

knowing c-‘(r) = x, the inverse coding function, it is straightforward to encode any



symbol sequencer in the system trajectory by properly changing the values of t and

C associated to x (notice that the angle 13 is previously known). Thus, in order to

transmit a long sequence of bits, it is necessary to perturb the coordinates (I, [) at

every crossing point with the surfaces of section.
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Figure 4.7: Projection onto the x-z plane of the chaotic Lorenz attractor crossed by the
Poincaré surfaces defined by y = +,/m and 1x1 > dm (left side) and by
y = -dm and 1x1 2 dm (right side). Notice that the intersection of the
attractor with each surface forms an essentially one-dimensional arc.
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Figure 4.8: One-dimensional arcs on the Poincaré surfaces of section. Left side represents
the z - z variables on the surface y = +dm and 1x1 2 dm and right side
represents the same for the surface y = -dm and IzI 2 dm.

‘Except for those sequences that may be forbbiden by the Lorenz dynamics.



Chapter 5

Information Encoding in Chaotic
Systems.

5.1 Introduction.

In the previous chapter, we have reviewed some of the most outstanding applications

of chaos to the field of communications. Now, we focus on the idea of controlling the

chaotic oscillator through small perturbations to the system trajectory [88,89,90,91].

It has been shown how these control techniques can be used to encode information in

the oscillator trajectory, but not much attention has been paid to the relationship of

the resulting encoding device with current Digital Communication Systems (DCS).

Section 5.2 is devoted to establish this relationship.

Next, Section 5.3 introduces a simple control technique that allows to encode

any desired sequence of information bits in the trajectory of the Lorez system. The

initial idea is basically the same exploited by Hayes and Grebogi in [90, 89], already

described in Section 4.2.1, but a new result has been achieved that leads to a more

simple control algorithm. This algorithm also has the benefit of preserving most of the

properties of the chaotic signal. Namely, the information carrying waveform remains

deterministic up to a certain extent. From the point of view of communications, this

determinism provides some redundancy that can be exploited in two different ways:

to improve the transmission reliability and to increase the transmission capacity.
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Section 5.4 is devoted to reliability improvement. One of the more harmful forms

of interference in a communications channel is impulse noise (see Appendix B.2),

that is, huge noise spikes that completely hide the transmitted signal, rendering it

impossible for a conventional demodulator to detect the transmitted bits. Hence,

in this chapter we introduce two methods that take advantage of the knowledge of

the chaotic system at the encoder (here the Lorenz) to reconstruct the signal in

this extremely noisy intervals, that will be modeled  for convenience as dropouts, i.e.,

complete absence of signal.

To conclude, Section 5.5 describes an alternative application of the results in

dropout reconstruction to implement an efficient time division multiplexing system:

relying on the dropout reconstruction methods several information sources can share

a communication channel by transmitting in turns only small bursts of their encoded

chaotic signals and let the intended receiver to reconstruct the entire waveform. Thus,

the overall capacity of the communication link is increased.

5.2 Block Diagram of a Chaotic Digital System.

In this section, we will describe how control-based encoding techniques, like the one

proposed by Hayes and Grebogi [90, 89] or the one described later in this chapter

can fit into a conventional Digital Communication System (DCS) (see Appendix B

for a brief introduction to digital communications). For a communication engineer,

such encoding techniques can be seen as a new type of digital modulations with some

advantages arising from the properties of chaotic behavior. It must be remarked that

our goal is not to replace the succesfull current DCS scheme, but to convey the idea

that chaotic signals exhibit interesting features that can really make a difference and

bring some improvement to communication systems.

Figure 5.1 illustrates the elements of a conventional DCS where the digital
modulator and the digital demodulator have been replaced by blocks labeled  waveform

encoder and waveform decoder, respectively. These names are chosen to emphasize

that the function of these elements is to translate from an information binary sequence

to a waveform (continuous time and amplitude signal) carrying this information and

viceversa, but the functionality is the same. This system will be referred as chaotic

DCS.
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Figure 5.1: Block diagram of a chaotic digital communication system.

The waveform encoder consists of a chaotic oscillator and a controller, as shown

in Fig. 5.2. The latter is fed with the binary information sequence and, starting from

a previous knowledge of the chaotic system, forces the oscillator to follow a certain

trajectory, encoding in this way the desired binary sequence into an output waveform.

This waveform is sent through a channel and then the waveform decoder recovers,

starting from this waveform, the transmitted sequence of symbols. This recovery can

be made by direct observation of the received signal or by using it to drive a local

oscillator and observing its trajectory.

Waveform encoder

Chaotic

Oscillator

A
Perturbations

Binary sequence w Controller

- Waveform

Figure 5.2: Structure of the waveform encoder.



Notice that the controller in Fig. 5.2 can operate as described in 4.2.1 or in some

other publications (see, for example, [88, 91]). In the next section, we will introduce

a new encoding method that departs from the same principles but results in a more

simple control algorithm.

5.3 Encoding Technique.

It has been demonstrated that chaotic systems can be manipulated via arbitrarily

small perturbations on the system trajectory to generate controlled chaotic orbits

whose symbolic representation corresponds to the encoding of a desired message

[88, 89, 90, 91].. Severall chaotic systems have been used to this end, but we will focus

our attention in the Lorenz system (see Fig. 5.3 for a x-z projection of the chaotic

attractor) because a rather straightforward connection can be established between

the system trajectory and a binary information sequence. Hayes and Grebogi already

exploited this feature in [89, 90]. These references have been reviewed in Section 4.2.1

together with some other useful properties of this system.
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Figure 5.3: Lorenz attractor projected onto the x-z plane.

Recall that for standard parameter values, 0 = 10, R = 28 and b = 8/3, the

Lorenz system produces a chaotic attractor in a three-dimensional state space. The

state point (x, y, x) executes an apparently random dance, circling one lobe a few



times, then jumping to the other for a few cycles, then back. It is possible to label

one lobe of the attractor with the symbol 0 and the other one with the symbol 1.

Then, every time the system cycles on the 0 lobe, it generates a 0 and similarly for

the 1 lobe. Therefore, the sequence of cycles on the two lobes can be easily translated

into a sequence of bits. When the system is running freely, the sequence of lobe cycles

approximates a binary symmetric information source, i.e. a source of binary symbols

that emits O’s and l’s with equal probability and independently of its history, like

a coin toss. When the x(t) scalar signal is observed, the binary digits appear as a

sequence of positive and negative spikes, the positive spikes representing the l’s and

the negative spikes the 0’s. In this sense, it is straightforward to understand the

signal x(t) as a carrier of digital symbols.

As it was said in Section 4.2.1, it is possible to control the future sequence of

bits encoded in the variable 2 by applying small perturbations to the trajectory

of the system at each crossing with the Poincaré surfaces of section, defined by

y=fdmand 1x1  > Jbo(see Fig. 4.5 in the previous chapter). Because

the Lorenz equations represent a flow that is highly dissipative and, therefore, strongly

contracting along the stable direction, the intersection of the attractor with each

surface forms an essentially one-dimensional arc, as shown in Fig. 4.7 and Fig. 4.8.

For this reason, the future symbol evolution is well determined by a proper choice of

a single magnitude. Hayes and Grebogi [89, 90] have chosen as such magnitude the

distance along the one-dimensional arc on the plane x - z from the fixed point at

the center  of the respective lobe to the crossing point on the surface of the respective

section. This choice implies the perturbation of two coordinates of the state point, x

and Z. However, we will show here that the system trajectory can also be accurately

controlled when the system coordinate x at the crossing points is chosen as the

magnitude to be perturbed. The verification of this fact readily leads to a more

simple information encoding method.

To understand why perturbing the variable x is enough to determine the sequence

of crossings followed by the system trajectory, let us resort to the inverse coding

function, z(r), which gives the required value of the coordinate z at each crossing

with the surfaces as a function of the binary fraction. Recall from the previous

chapter that the binary fraction, r, is a real number

n

r = c bi2-i < 1 (5.1)
i=l



calculated from the bits blba . . . b, associated to the system trajectory crossings with

the Poincare surfaces. Bit bl corresponds to the current crossing, b2 corresponds to

the next crossing and so on up to the n-th bit.

Figure 5.4 plots the inverse coding function Z(T).  Note that the resulting curve is

symmetric with respect to the straight line T = 0.5 because of the symmetry of the

coordinate x on both lobes of the attractor (see Fig. 5.3).
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Figure 5.4: Inverse coding function, z(r)_

In the inverse coding function, X(T), the same value of the coordinate x is

associated to two complementary sequences, as for example, the sequences 01101110

and 10010001. If we restrict to the left-half (alternatively to the right-half) of

the figure then, since the function x(r) is monotonically increasing (alternatively

monotonically decreasing), there exists a one-to-one correspondence between the

sequence and the value of x (the sequence is completely determined by a value of

z and vice versa). The apparent problem of two sequences associated to the same

value of x is not actually a problem. The symmetric character of the function Z(T)

is a consequence of the symmetry of the Lorenz system. For x = zo, there are two

different state points: either (zo,~o,x~)  at the “0” lobe, or (XL, ~6, zo) at the “1”

lobe. Since the intersection of the Lorenz attractor with each Poincare surface is a

one-dimensional arc, each value of z corresponds to only one value of z for a given

Poincare surface. Therefore, when ~0 < 0 (alternatively ~0 > 0) the system is at the

“0” lobe (alternatively “1” lobe) and only sequences starting with “0” (alternatively

“1”) can be generated. Thus, the ambiguity of having two complementary sequences

associated to the same value of z is completely removed.

In order to know the perturbation we need to apply at each crossing, it is necessary



to know the behavior of the free running Lorenz system. So, we let the system run

for a long period of time and store the value of the coordinate z at each crossing

together with the subsequent n-bit sequence. The first bit in the sequence represents

the current crossing, the next bit represents the next crossing, and the last bit of

the sequence represents what happens n - 1 oscillations after this crossing. Now, let

x1 and ~2 be the value of the coordinate x at two consecutive crossings with any of

these surfaces and let blb2 . . . b, be the corresponding n-bit sequence associated to

the crossing at ~1. Then, the n-bit sequence associated to the crossing at 23 is the

same sequence associated to the former crossing, ~1,  but left-shifted one place and

with a new bit at the right most position, that is, bzb3 . . . bn+l, as shown in Table 5.1.

21 10011010
272 00110100Elz3 01101000
x4 11010001

Table 5.1: 8-bit sequences and associated z-crosspoints. As the Lorenz system runs, the
succesive  crosspoints of the variable x with the Poincaré surface (zi) are recorded, together
with the subsequent symbolic bit sequence. The sequence corresponding to the (i + 1)th
crosspoint results from left-shifting one bit the ith sequence, with a new bit entering on the
right-most position.

When the system runs freely, it can be observed that close values of the coordinate

z produce the same n-bit sequence. Therefore, the different sequences of n bits are

represented by different windows of close values of the variable x, and it is possible

to associate to each of these sequences the average value of the coordinate z in these

windows, as shown in Table 5.2. The value of Z, in that table, for instance, would be

calculated as x, = & ‘& zi, where all different (but close) xi generate the sequence

00000001.

In this way, we have obtained a relationship between the n-bit sequences and

the required values of the variable Z. If the n-bit sequences are represented by their

binary fractions, this relationship is the inverse coding function Z(T) we

represented in Fig. 5.4.

Now that the free running Lorenz system has been studied,

have already

we proceed
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Table 5.2: 8-bit sequences and associated averaged z-crosspoints. Since different (but close)
z-crosspoints may correspond to the same symbolic sequence, it is reasonable to associate
this sequence to the average of such crosspoints.

to explain in detail the control technique. Let 011100010.. . be the desired

transmitted sequence of bits, that is, the input of the waveform encoder, and let

010110011000111000111 be the sequence of bits generated by the free running system

during some time for a certain initial condition of the state coordinate (z, TJ, x), as

illustrated in Fig. 5.5(a). The goal of the waveform encoder is to produce a waveform

that encodes the desired sequence of bits representing the message. Table 5.3 shows

the values of the coordinate x for six consecutive crossings with the surfaces of section

when the system runs freely.

21 = 40.0001 01011001
22 = 39.3510 10110011
z3 = 40.9571 01100110
z4 = 37.7601 11001100
z5 = 41.0665 10011000
2$ = 37.6657 00110001

Table 5.3: Six consecutive z-crosspoints and their corresponding 8-bit sequences in a free
running Lorenz  system.

Suppose that the control starts at the sixth crossing. The sequence associated

to z6 = 37.6657 is 00110001, as seen in Table 5.3. However, a small perturbation

of 26, Axs, yields a new value of x at the crossing, 26 = 26 + AZ+,  = 37.5801, with

a new associated sequence 00110000. We only need to apply a small perturbation

to the variable x, A26 = -0.0856, to force the system to produce the first desired

bit (a 0 bit) seven oscillations after the present one, as seen in Fig. 5.5(b), where

the first vertical line indicates the point where this perturbation is applied, and the

second one the instant where the effect of this perturbation is noticed. The second

desired bit is encoded changing the value of the z coordinate at the next crossing,



~7, by the corresponding & (looked up from Table 5.2) with the associated sequence

011000101. Repeating this process at every crossing, the desired bit sequence is

encoded, as shown in Fig. 5.5(b) and Table 5.4.

Table 5.4: Behavior of the perturbed Lorenz system. Starting at i = 6, the value of the
variable z at each succesive  crossing with a Poincaré surface is corrected in order to select
the new bit entering on the right most position of the associated symbolic bit sequence.
Thus, the bits printed in bold-face have been selected by the controller to encode some
desired message.

Notice that very small perturbations are sufficient to control the system because

the effect on the trajectory is not to be felt until a given number of oscillations, n- 2,

have been completed 1.. This number will depend on the number of bits considered in

the encoding process: the more bits are used the smaller the perturbations are applied.

Besides, controlling the chaotic oscillators through small perturbations provides two

important advantages:

the control device can remain at the microelectronic level because of the

extremely low power requirement, and

the perturbed system keeps the properties of the original chaotic system, such

as a certain degree of determinism. From a communication point of view,

1It must be remarked that the system is actually perturbed at each crossing with a surface of
section, but the perturbation at the kth crossing is to determine the bit produced by the system in
the (k + n - 1)th crossing.
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this determinism provides some redundancy that can be exploited to improve

the transmission performance in different ways. This issue will be further

investigated in Section 5.4 and Section 5.5.

0 200 400 600 800 1000 1200 1400 1600
Time

_-

-20
0 200 400 600 800

Time
1000 1200 1400 1600

Figure 5.5: (a) Temporal evolution of the variable x for the non-perturbed Lorenz system.
(b) Temporal evolution of the variable x for the perturbed Lorenz system.

5.3.1 Validation of the Control Procedure.

Computer simulations have been carried out in order to illustrate the performance of

a chaotic DCS that employs the proposed encoding scheme. It has been assumed that

the transmitter sends frames of 105 bits through a channel with additive, zero-mean,

white Gaussian noise and the aim of the waveform decoder is to detect these 105 bits

without the help of any channel code, so only the chaotic encoding is evaluated. The

figure of merit is the frame error probability, i.e., the probability of having at least

one bit error in a frame, that has been estimated for several values of the Signal to
Noise Ratio (SNR). The SNR is calculated as



“3

where Psignaz is the average power of the transmitted signal and Pnoise  is the power

of the Gaussian noise (i.e., its variance, since zero mean is assumed).

There may exist several choices for the design of the waveform decoder. Figure

5.6 shows a block diagram of the one chosen for the experiment.

x 0) + n (0
z (t> Maxima/Minimac Input filter

Detector w b bl

Figure 5.6: Block diagram of the proposed waveform decoder.

The goal is to find the positive local maxima (associated to bits 1) and negative

local minima (associated to bits 0) in the received signal. This may be a rather

difficult task in the received noisy signal, a;(t) + n(t), being n(t) the white Gaussian

noise, so a linear system that performs both low pass filtering (achieving some noise

reduction) and enhancement of the positive maxima and negative minima has been

implemented in order to ease bit detection. Figure 5.7 depicts the impulse response

of this filter, corresponding to the analytical expression

/a(t) = l1 - 0 . 5  t2

a&
exp

02 -

15

0
0 10 2 0  30 4 0

Time
5 0  6 0  7 0  80

Figure 5.7: Impulse response of the input filter (5.3).

( 5 . 3 )

Note that h(t) spreads over a time support interval that is approximately the

same as in one oscillation of the Lorenz variable J;(t)  and its amplitude has been

tuned to be close to the amplitude of the peaks in this signal z(t).  In fact, the input

filter thus defined intends to play the role of a matched filter [186] in a conventional



DCS. Figure 5.8 compares the noisy input signal (upper plot) and

filtered waveform (lower plot) for an SNR of 1 dB.

the (normalized)

Next, the filtered signal, Z(t), goes through a nonlinear device that identifies the

most outstanding positive local maxima and negative local minima in the signal, so

the most likely (in some sense) transmitted bits, b[n], are detected. These bits are

depicted in Fig. 5.8 as square points.
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Figure 5.8: Representation of the received noisy signal (upper plot) and the normalized
filtered waveform (lower plot), where the square points represent the detected bits.

Finally, Fig. 5.9 shows the quantitative results of the experiment. It can be seen

that for an SNR of 2 dB the probability of a frame error (i.e., at least a bit error within

a frame of 105 bits) is already as low as lo- 3. Since the values of the SNR assumed

for conventional DCSs are typically higher (around 10 dB for wireless systems and

higher for wired ones) it can be concluded that a practical implementation of the

proposed system is possible2.

2Note, however, that the experiment does not take into account several forms of distortion,
different from Gaussian noise, that appear in a real communication channel.
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Figure 5.9: Frame error probability for different values of the SNR when frames of 105 bits
are transmitted.

5.4 Dropout Reconstruction.

Most types of channel interference have reasonably predictable and constant

magnitudes, so it is possible to find engineering solutions to cope with them in

conventional DCSs (see Appendix B.2 for usual problems in transmission media).

However, the primary source of errors in digital data communication is the impulse

noise: an unpredictable noncontinuous signal consisting of irregular pulses or noise

spikes of short duration and relatively high amplitude. This sort of impairment is very

harmful for digital communications because the received signal is severely distorted

and relatively long sequences of bits cannot be detected reliably. Hence, we are

interested in showing the help that chaotic behavior can provide in such situations.

It will be shown that these impairments can be succesfully dealt with resorting to

the properties of chaotic behavior, particularly its determinism, that are preserved

by the encoding technique discussed in the previous section.

Figure 5.10(a) illustrates the destructive effects of impulse noise on the signal

received at the waveform decoder. It is apparent from the plot that having an interval

of signal distorted by impulse noise is practically equivalent to having no signal at

all, because no information for the bit detection process is available from the received

signal. Therefore, it is possible to model these useless intervals as dropouts, i.e.,



complete absence of signal, as shown in Fig.5.10(b). The goal of this section is to

present two different methods that take advantage of the determinism of the chaotic

signal to reconstruct the lost parts of the waveform.

0 2 0 0  4 0 0  6 0 0  8 0 0  1 0 0 0
t

1 I I I 1 I
0 2 0 0  4 0 0  6 0 0  8 0 0  1000

t

Figure 5.10: (a) Signal distorted by impulse noise. (b) Impulse noise modeled  as a dropout.

Since the perturbed system preserves a certain degree of determinism and the

Lyapunov time3 of the Lorenz oscillator is big enough, it is possible to resort to the

non perturbed system in order to reconstruct the signal transmitted originally in

the time interval of the dropout. The maximum number of oscillations that can be

reconstructed in a dropout (and, therefore, the maximum number of bits that can be

recovered) is given by the number of bits used in the encoding process. Remember

that the use of n bits in the encoding technique means that the oscillation n - 1 after

the instant when a perturbation is applied may encode a different bit with respect to

the natural evolution of the non perturbed Lorenz system from that instant. That is:

the first oscillation represents the first bit (and the point where the perturbation

3The Lyapunov time is a measure of how much two almost identical trajectories diverge as time
goes.



is applied), the next n - 2 oscillations produce exactly the same bits as in the

non perturbed system and the nth oscillation represents the bit encoded with the

perturbation applied n - 1 oscillations before. As a consequence, it is clear that the

number of oscillations that makes sense to recover using n-encoding is n - 2.

Before proceeding any further let us point out that the device or devices

implementing dropout detection and reconstruction can be considered as a subsystem

within the waveform decoder. As depicted in Fig. 5.11, the new block fits naturally

as an stage previous to those of matched filtering and bit detection, already explained

in Section 5.3. Note that the ultimate goal of dropout reconstruction is to feed these

subsequent operations with as much information as possible to improve bit detection

accuracy and reliability.

Waveform Decoder
______-_____-_____-_____________________~~~-~~~~--_~~---__

Reconstruction

Reconstructed
signal Matched

Filtering

Maxima
4ima

Detector

Figure 5.11: Block diagram of a waveform decoder that performs dropout reconstruction.

5.4.1 First Reconstruction Method (FRM).

Assume that the knowledge of the non perturbed Lorenz system is available in the

form of some sort of storage where the time evolution of the variable x of the system

has been recorded for a long period of time. This stored variable is termed Z. When

a dropout is detected in the receiver (time to), the following steps are taken [139]:

l M samples of the input signal right before the dropout are recorded, to obtain

the observation vector

vo = (x(to - (9, +I - 6 - T), . . . ,x(&-J - 6 - (A4 - 1)2-y, (5.4)



where 6 is a very small quantity of time to indicate that the first sample is taken

very close to the begining of the dropout and T is the time distance between

samples. Note that the samples are taken in reverse time order.

l Search the vector of samples

-v, = (z(t;), qt; - T), . .‘, qt; - (M - l)T)) (5.5)

from the stored variable, z:, corresponding to the non perturbed Lorenz system,

that matches more tightly the observation vector, i.e., such that the Mean

Square Error (MSE) defined by,

MSE = a M&(t’a - 70) - z(to - 6 - mT))2 ( 5 . 6 )
m - 0

is minimized.

l The dropout is reconstructed as

x(to> = :(tb + 6)

( 5 . 7 )

x(&J -tL) = qt; +S+L)

where L represents the size of the dropout.

Figure 5.12 illustrates the behavior of this recovery method. The upper plot

shows the transmitted signal with the encoded message obtained after applying the

proper perturbations. In the lower plot we can see the received signal (solid line)

with several dropouts and how they are recovered (dashed line). It is evident that

the reconstructed signal tracks the original one tightly. It must be remarked that the

accuracy of the proposed method depends on the length of the signal dropouts, not

on their frequency. Indeed, there exists a maximum dropout length for an adequate

recovery, which depends on the perturbation amount: the smaller perturbations

applied the longer dropouts can be recovered.

Notice that this reconstruction method can also be applied when the stored signal

used for reconstruction comes from a perturbed system, instead of a free-running one.

This could be useful when there exist some forbidden sequences in the free-running

system. This is the case, for example, with the Rössler system [90,91]. Since there are
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Figure 5.12: Variable x(t) of the Lorenz system representing an encoded message. (a)
Transmitted signal; (b) received (solid line) and recovered (dashed line) signals.

sequences never produced by the free-funning oscillator it is neccesary to impose some

grammar constraints (in the context of communication, channel constraints) so that

the sequence of bits to be encoded is one that the system can generate4. However, this

usually restricts even more the number of different generated sequences. For dropout

reconstruction only the perturbed subset is useful since, although more sequences can

be generated by the attractor, only this subset will be used in the transmission. So, it

is clearly more efficient to build the signal storage from the perturbed system instead

of the free-running one. One of the reasons why we have chosen the Lorenz system as

the chaotic oscillator used to encode the message at the transmitter instead of other

chaotic systems is that for 8-bit encoding there are no forbidden sequences, that is, if

4This means that if we have to encode a message consisting of a sequence bl, . . . . b, that the Rössler
cannot produce, then we need to apply some invertible function F(bl  , . . . , b,J = 61, . . . ,6,, n < m
such that the resulting m-bit sequence is not forbidden by the system dynamics. This m-bit sequence
is the one actually encoded into the system trajectory. At the receiver, the original message is
recovered as bl , . . . . b, = F-l (ii 1, . . . . &). For example, if two consecutive O’s cannot be generated by
the attractor, a possible grammar constraint could be 0 + 01, 1 -+ 11.



we let the system evolve long enough all 2”s8 possible n-bit sequences are generated.

This is an important advantage because there is no need to impose constraints to

the sequence of transmitted bits. Thus, there is no loss in transmission capacity and

both the transmitter and the receiver are more simple.

5.4.2 Second Reconstruction Method (SRM).

The problems of the previous method are the necessity of having some sort of storage

for the free Lorenz system and the time spent in searching through this storage.

To avoid them, a second method is proposed. To apply this second method it is

necessary just the knowledge of three consecutive samples of the variable x. As the

signal reaches the receiver, we record its value x(te) right before the gap, as well as

the values x(te - h) and x(te - 2h), where h is some small time interval. These three

consecutive samples of the variable x are then employed to numerically evaluate

[z&s - 2h), z(to - 2h)] tha correspond to the sample x(to - 2h), recorded at thet

receiver. Then, [x(te - 2h), y(to - 2h), z(to - 2h)] are used as initial conditions in the

Lorenz equations to yield the evolution of the x component of the system during the

dropout.

Let us describe the process in detail. The initial conditions before the dropout

can be found solving the following equation,

pz 0 ~RK4(~(~0  - 2% dh - 2% +o - 2h))

-P x  0 9RK4 0 gRK4(x(tO  - 2h),  Y(to - 2h),  x(to - W)

where  gRK4(+),  Y@),  z(t)) = (x(t  + h),y(t + h),z(t + h)) r e p r e s e n t s  o n e

iteration forward of the fourth order Runge-Kutta algorithm with time step h ,

px(x(t), y(t), z(t)) = x(t) is the projection of the three dimensional vector onto the

first component and the symbol o denotes function composition.

To solve (5.8) we can resort to the well known Newton method. This is a numerical

method used to find an aproximated root of f(x) = 0 given an initial approximation

x0 and using the recursion

x, = x,_~  - IDf(x,)[elf(x,) n = 1,2,. , . , ( 5 . 9 )



where x, represents the succesive approximations to the actual root (in our case,

the vector x, represents succesive approximations to the coordinates y(ts - 2h) and

z(t,-, - 2h)), and Df (x,J is the Jacobian of the function f(x) with respect to the vector

x. Then, the only problem to find the root of Eq. (5.8) is to find an initial aproximated

root, i.e., $(to - 2h), a(t, - 2h), to start the recursion5. It is possible to obtain this

approximated root starting from the knowledge of [~;(to - 2h),z(to - h),z(ts)]  just

going backward in time with the Euler method 6. In particular, it is only necessary

to evaluate the first of the following equations at t = to, to - h and the second one at

t = to - h.

x(t) = z(t - h) + ha(y(t  - h) - x(t - h))
y(t) = y(t - h) + h(Rz(t - h) - y(t - h) - x(t - h)x(t - h))

(5.10)

The values of [ij(to - 2h), Z(to  - 2h)] obtained in this way are,

@(to - 2h) = z(to - 2h) + &+@, - h) - z(to - 2h))
,.(to _ 2h) = ~(O(to-2h)-B(to-h))+~(~o-2h)-~(to-2h)

z(to-2h)

(5.11)

where

jj(to - h) = z(to - h) + $+(to) - z(to - h)). (5.12)

Once the aproximated root, [g(t,-, - 2h), Z(to  - 2h)], is obtained, we apply the Newton

recursion (5.9) in order to find the initial conditions [z(to - 2h), y(to - 2h), x(to  - 2h)].

Obtaining an accurate enough approximation may require several iterations of the

algorithm. This number of iterations can be either previously fixed or not. In the

latter case, the algorithm must be iterated until the error is less than a certain value,

E. Finally, the fourth order Runge-Kutta algorithm is used to reconstruct the dropout

starting from [z(to - 2h), y(to - 2h), z(to - 2h)].

The capability of this method is illustrated in Fig. 5.13, where it can be seen

that with very few samples of the signal it is possible to reconstruct it completely.

This maximum number of well reconstructed oscillations will depend on the number

of bits used in the encoding process, that is, of the n-bit encoding.

5This approximation will play the role of x0.
‘This method could have been used to numerically integrate the Lorenz system as well, but the

Runge Kutta of fourth order method is more precise.
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Figure 5.13: Reconstruction of the variable z(t) using the second reconstruction method
(a) Transmitted signal z(t) with an encoded message; (b) received signal z(t) (‘*‘) and
signal recovered (dashed line) just starting from the received signal. (c) Overlapping of the
transmitted (solid line) and recovered (dashed line) signals.

5.4.3 Performance of the Reconstruction Methods.

The goal of this section is to evaluate the performance of the two reconstruction

methods and, to do so, some figure of merit that quantifies this performance must

be devised. Let us consider a dropout that spreads over N cycles of the received

signal, that is, a dropout that causes N bits to be lost. Both the FRM and the

SRM try to recover these N bits by means of the reconstruction of the received

signal from the uncontrolled Lorenz system. This is possible because the system is

practically deterministic, except for the little non determinism produced by the small

perturbations, and the Lyapunov time of the system is big enough. However, some

small numerical error either in the FRM or the SRM may cause the recovered signal



to diverge from the transmitted one due to the high sensitivity of chaos. At that

moment, an erroneous bit is recovered and all subsequent bits in the dropout are be

recovered randomly.

This argument leads to a performance index consisting of the probability of

making the first bit recovery error in the i-th reconstructed cycle, i = 1,. . . , N.

This performance index will be referred as First Error Probability (FEP) of the i-th

bit and all simulations in this section are devoted to computing the FEP of the bits in

a dropout with both the FRM and SRM. When an 8-bit encoding is considered, the

maximum number of reconstructed oscillations (what implies the maximum number

of recovered bits) in each dropout will be equal to six. Dropouts of six oscillations

have been simulated and we have evaluated the probability of having the first error

in the first oscillation of the reconstructed dropout, the probability of having the first

error in the second oscillation of the reconstructed dropout and so on. This FEP will

be computed in two different scenarios: with and without Gaussian noise.

Let us consider first that the channel effects on the transmitted signal are

negligible except for the dropouts themselves, so the reconstruction methods can

work on noiseless samples. Figure 5.14 plots the FEP for both the FRM and the

SRM. For the FRM, the number of components of the observation vector (see Eq.

(5.4)), i.e., M, has been taken equal to three. In both cases, a noiseless received

signal with 32400 dropouts of 6 oscillations have been simulated. It is apparent that

the SRM exhibits a better performance for the six bits in the dropout. Actually,

the results obtained with the SRM can be qualified as excellent, since the overall

probability of making at least one error is as low as 0.0487. The results obtained

with the FRM are not so remarkable, although doubtlessly good. This is because

in practice the FRM operates on a finite register of stored waveforms, whenever the

possible realizations of the received signal are infinite. Since the SRM does not suffer

this limitation, it outperforms the FRM.

However, there are not many practical applications where the typical SNR is

sufficiently high as to justify the assumption of receiving a noiseless signal. Therefore,

we have repeated the former simulations for the FRM when the received signal is

contaminated with additive, zero-mean, white Gaussian noise for different values of

the SNR. The number of samples, M, has been taken equal to 30 (vs. 3 in the

noiseless case). This number has been increased to improve the robustness of this
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Figure 5.14: First Error Probability for the FRM (‘o’) and SRM (‘*‘).

method in noisy channels, as can be seen by resorting to the noise statistics. Let us

define the vector of A4 samples from the received signal as

vo = (x(to - S) + no, z(to - 6 - T) + 121, - - . ,z(trJ - 6 - (M - l)T) + n(M-1))

where z(to-6-mT),  m = 0,. . . , Ad - 1 represents the components of the transmitted

signal and n,, m = 0, . . . , Ad - 1 represents the noise of each sample. If the number

of samples, M, is too small it may occur that a vector

v, = (z(t& qt; - T), . . . , qt; - (M - l)T))

from the stored signal matches Vo quite well due to the randomness of the noise but

it is not actually a good choice to reconstruct the dropout because there is little

resemblance between va and the samples from the transmitted signal,

v;lean = @(to - J), z(to - 6 - T), . . . )3$-J - 6 - (M - 1)T)).

To guarantee that an small error with respect to the transmitted noiseless signal is

also achieved when there is an small error between the noisy samples, Vo, and the

stored ones, vo, it is necessary to increase the value of M. Recall from Section 5.4.1

that the FRM tries to minimize the mean square error between Vo and vo, that can



be written as

If the value of A4 is not high enough,

not involve a minimization of

1 M - l

- mT) - Lr(to - 6 - mT) - nm)2. (5.13)

a minimization of the mean square error does

; c (z(tb - mT) - z(to - 6 - mT))2 9

m=O

that is what one actually is looking for. However, for a sufficiently high value of M a

minimization of the mean square error implies a minimization of such expression. It

is simple to show that when the signal components, z(to - 6 - mT),  match exactly

the stored samples, T($, - mT),  then

1 M-l

MSEnoisy  = G c nk (5.14)
m=O

that approximates the noise power, E[n2] = o2 (E[.] denotes mathematical

expectation), for sufficiently high M. However, when z(to - 6 - mT) # Z(tb - mT) it

can be proved7 that, when M is high enough, the mean square error turns out to be

MSEn,iay  = o2 + C

where C is a positive constant proportional to

(5.15)

& yw; - mT) - z(to - 6 - mq”.
m-0

Hence, if M is high enough, the MSEm,iay  will be approximately o2 when adequate

samples are found in the storage, whereas the constant C will increase the value of

the MSEn,iSy when there exist some mismatch. As a consequence, a minimization of
-

the mean square error implies a minimization of the difference between Vodean and Vo.
Thus, the FRM can be safely applied as in the noiseless case with the only difference

that the MSE,,isy  cannot go below the threshold of the noise power g2.

Figure 5.15 illustrates the performance of the FRM when considering SNR values

of 20, 25 and 30 dB, and M has been taken equal to 30. As in the noiseless case, a

received signal containinig 32400 dropouts of 6 cycles has been simulated. It can be

‘The proof is easily carried out if we let the differences ~(tb-mT)-z(to-6-A!‘), m = 1,. . . , M
be samples of a random variable statistically independent of the noise.



seen that, as the SNR decreases, most of the FEP mass is shifted to the beginning

of the dropout This means that for low SNR the first reconstruction error is more

likely to happen in the first bits, thus reducing the method reliability because all bits

after the first error are recovered randomly. However, the figure also shows that for

an SNR of 25 dB or above, the method performance becomes reasonably good, in the

sense that it attains relatively low values of the FEP (below 10-1 for the first 3 bits

when SNR = 30 dB), and sound because most of the FEP mass concentrates on the

Past bits in the dropout so the recovery errors, if any, can be expected to affect only

these bits.

1 2 3 4 5 6
First erroneous bit

Figure 5.15: First Error Probability for the FRM when the SNR is 20 dB (‘o’), 25 dB
(‘squares’) and 30 dB (‘diamonds’).

Note that we are not presenting simulation results concerning the performance of

the SRM in the noisy channel. The reason is that this method is very sensitive to

the effect of noise in the samples used to compute the reconstructed signal. Actually,

we have observed that the performance obtained by the FRM method with SNR=30

dB is not achieved by the SRM until the SNR rises to about 70 dB. A possible

solution to improve these results could be to perform some sort of filtering (prior to

the application of the SRM) on the received signal that removes noise while leaving

the chaotic signal fairly undistorted. One such filtering could be the one proposed in

[191].



5.5 Multiplexing of Chaotic Signals.

In the previous section two methods have been presented that allow to reconstruct

large signal dropouts in the received chaotic signal starting from just a few samples

of the signal right before the dropout. We have seen that this is advantageous to

combat some very harmful impairments in digital communications such as impulse

noise. Alternatively, if the communication channel is not a hostile one (no noise

spikes, no severe multipath propagation, . ..) it is straightforward to think of using

these reconstruction techniques to increase the system transmission capacity by

multiplexing several information signals within the same communication link.

Multiplexing refers to a variety of techniques used to make more efficient use

of a transmission facility (see Appendix C). In many cases, the capacity of a

transmission facility exceeds the requirements for the transfer of data between two

devices. That capacity can be shared among multiple transmitters by multiplexing a

number of signals onto the same medium. In this case, the actual transmission path

is referred to as a circuit or link, and the portion of capacity dedicated to each pair

of transmitter/receiver is referred to as a channel.

One method for creating multiple channels within a link is to subdivide a reference

time interval of duration T’, called the frame duration, into, say, N nonoverlapping

subintervals called slots,  each of duration Tf/N.  Then each user who wishes to

transmit information is assigned to a particular time slot within each frame. This

multiplexing method is called time-division multiplexing (TDM) (see Appendix C)

and it is frequently used in data and digital voice transmission (mobile telephone

systems, satellite communications, computer networks, . ..).

Let us see an example that will illustrate how it is immediate to design a TDM

transmission system relying either on the FRM or on the SRM analyzed above.

Consider a digital transmission system with a maximum allowed frame duration of

450 ~LS  (Tj = 450 ps). Assume the available hardware offers a sampling frequency

of fs = I MHz (sampling period of 1 ps). If each oscillation of the Lorenz signal

spreads over 75 samples (approximately), then the chaotic DCS discussed in Section

5.2 can provide up to 450/75 = 6 bits per frame, i.e., 6/(450 * 10e6)  z 13330 bits

per second (bps) = 13.33 kbps. However, and assuming no dropouts are present, the

link capacity may be used more cleverly. Specifically, we can transmit small bursts



of several different encoded signals (as shown in Fig. 5.16) and use the FRM (in

case the channel noise is significant) to reconstruct all signals and, thus, recover all

transmitted bits.

I

I I I

50 100 150
Time (ps)

Figure 5.16: First, second, third and fourth time slots within a multiplexed frame. Each
slot contains a burst from a different 8-bit encoded signal that is passed to the corresponding
receiver by a demultiplexer device. Then, the receiver applies either the FRM or the SRM
to reconstruct the whole encoded signal and recover the bits. The SNR has been taken
equal to 30 dB.

To follow with the same example, and assuming M = 30 samples are enough to

apply the FRM then 450/30  = 15 bursts from different signals can be transmitted

during the frame duration Tf. Let us assume that, due to time dispersive channel

effects [186] or hardware constraints, only 13 bursts can actually be transmitted

in one frame. Assume also that the original signals are 8-bit encoded but, due to

bit error rate requirements, each burst is used to obtain only four reconstructed

bits, i.e., R = 4 bits (see Fig. 5.17). Then, the overall transmission bit rate is

(4 x 13)/(450  * 1 0 - 6 )  = 115560 bps, i.e., 115.56 kbps. Therefore, the system capacity

has been increased by a gain factor of 8.6. Generalizing this example, it can be easily

calculated that the gain factor is

where R is the number of bits reconstructed from each signal burst formed by IM

samples (here kI also accounts for the samples wasted in avoiding time dispersion).

(5.16)
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Figure 5.17: Reconstructed signals (dash-dotted line) versus original transmitted signal
(solid line) corresponding to 4 signal bursts of M = 30 samples. The SNR has been
taken equal to 30 dB. The dashed vertical lines separates the received noisy signal used for
reconstruction from the reconstructed signal.

To summarize, Fig. 5.18 depicts the functional diagram of a multiplexed chaotic

DCS where N channels are accomodated  within the communications link. Each

transmitter is made up of a source encoder, a channel encoder and a waveform encoder

(plotted in Fig. 5.2) which generates a different encoded chaotic waveform. The

block labeled  multiplexer scans these chaotic waveforms periodically in a round robin

fashion. After a whole round, the multiplexer has brought together N signal bursts,

one from every transmitter, and concatenates them to form a composite signal called

frame. This frame is transmitted through the communication link and is received at

the demultiplexer. The task of this block is to take this frame, divide it into N signal

bursts and send the i-th burst to the i-th receiver. Each receiver is made up of a



waveform decoder, a channel decoder and a source decoder. The waveform decoder

is the one already shown in Fig. 5.11 where now the block label dropout detection

and reconstruction will be better called just i-th signal reconstruction, since it will

apply either the FRM or the SRM to reconstruct the original i-th encoded signal and

recover the desired bits.

1 Transmitter 21_

i Transmitter  N7

-I Receiver 1
I I

-4 Receiver 2 1

--i
Receiver N

I

Figure 5.18: Functional diagram of a synchronous TDM system with N channels.

The scheme in Fig. 5.18 actually corresponds to a synchronous TDM system [186],

but it is our belief that if the distortion is not as severe as to prevent the application

of any reconstruction method, the channel may be more efficiently used than with

conventional transmission.

5.6 Conclusions.

This chapter has been devoted to the use of chaotic signals as carriers of information

in a digital communication system (DCS). It has been introduced a new control

technique that allows to encode any desired sequence of information bits in just one

variable of the chaotic Lorenz system by applying small perturbations to the system

trajectory. The method departs from the same principles as the one proposed by

Hayes and Grebogi in [90, 89] but it exhibits the novel feature of controling  the

system trajectory by perturbing only the variable z, wehereas previous approaches

proposed to carry out this control by perturbing a compound magnitude that involved

variables x and z. Therefore, the encoding technique herein introduced may lead to

a more simple implementation in practice: only variable z has to be perturbed and



only one variable (the variable Z) has to be transmitted through the communication

channel

Since the power of the perturbations employed to encode the information bits

is very small, the perturbed Lorenz system keeps most of the properties of the

uncontrolled one, including a certain degree of determinism. From the point of view

of communications, this determinism provides some redundancy that can be exploited

either to improve the transmission reliability or to increase the information rate. Both

improvements are based on the realization that relatively long intervals of a chaotic

signal carrying digital information can be recovered from just a few samples. Two

methods to achieve this reconstruction have been introduced. The first reconstruction

method (FRM) relies on the availability of an storage containing samples from the

signal produced by the free running Lorenz system, whereas the second reconstruction

method (SRM) resorts to the integration of the system equations. The latter has

proved to be more precise in an ideal channel without noise, but the former is more

robust when the received signal is contaminated with Gaussian noise.

Both the FRM and the SRM have been applied to the problem of recovering

series of bits lost due to the effect of impulse noise on the received signal. This

is the primary source of errors in a conventional DCS but the results presented in

this chapter show how its effect can be significantly alleviated when the proposed

encoding technique and reconstruction methods are employed together.

Alternatively, when impulse noise or other sources of unpredictable distortion are

not a concern, the same procedures can be used to design an efficient time division

multiplexing communication system. Since only a few samples of the chaotic signal

are necessary to reconstruct a long interval that contains several bits, there is no

need to transmit the whole waveform. Thus, several transmitters may share the

communication link by tranmitting short bursts of their encoded chaotic signal in

turns. The intended receiver only has to choose the burst from the corresponding

transmitter and apply either the FRM or the SRM to reconstruct the whole waveform

and extract the encoded bits. If N transmitters can share the link, then the overall

information rate is multiplied by N.



Chapter 6

Conclusions and Outlooks.

The aim of this work has been the study of synchronization and control of chaotic

systems with some potential applications to biology and the field of communications.

The first part has been devoted to the study of the stability of the global

synchronized  state in open linear arrays and rings of identical chaotic oscillators.

Numerical simulations have been carried out with assemblies of Lorenz oscillators

and Chua’s oscillators, whereas experiments have been done in a board of Chua’s

oscillators. In all cases unidirectional coupling between circuits is set by the driving

method of Güemez and Matías, in such a way that synchronization can be achieved

when considering two oscillators. The results obtained are the following:

1. Synchronization  of chaotic oscillators arranged in an open linear array has been

found both experimentally and numerically. The oscillators synchronize in

a consecutive way as a synchronization wave with constant velocity spreads

through the array. A theoretical analysis that explains the linear relationship

between the time required for all oscillators to synchronize and the number of

elements in the array has also been supplied. It has been shown that the velocity

of the synchronization wave depends linearly on the highest of the Lyapunov

exponents corresponding to transverse perturbations to the synchronization

manifold of two consecutive oscillators.

2. The appearance of synchronization in circular geometries (or rings) of chaotic

oscillators has also been studied. Numerical simulations and experimental
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results show that synchronization cannot be achieved for an arbitrary number of

elements in the ring, but there exists an upper bound in the size of the ring above

which an instability in the global synchronized state arises This upper bound

can be theoretically obtained by means of a linear stability analysis around the

uniform synchronized state. It has been shown that, beyond this instability,

some stable spatio-temporal structures (periodic and chaotic rotating waves)

can arise from a symmetric Hopf bifurcation, such that neighboring oscillators

exhibit a phase lag of approximately l/N of a period (being M the number of

oscillators in the ring), characteristic of the first Fourier mode transverse to the

synchronization manifold that becomes unstable.

3. The interaction between chaotic rotating wave structures when two rings are

diffusively coupled cell-to-cell has been investigated. Depending on the sense

of driving within each ring, two different configurations have been analyzed:

parallel and antiparallel coupling. In the case of parallel coupling two definite

behaviors have been obtained: when coupling is weak two desynchronized

chaotic rotating waves are observed, each one in a different ring, and when

coupling is strong these two waves become synchronized. Instead, in the case of

antiparallel coupling the situation is richer: for weak coupling the same behavior

is obtained, namely, two desynchronized rotating waves. For intermediate

coupling, the rotating wave structure vanishes and all oscillators inside each

ring become synchronized but there is no synchronization between different

rings. And, for strong coupling all the oscillators synchronize  exhibiting the

behavior of an isolated chaotic oscillator: a double-scroll.

The second part has been devoted to the use of chaotic signals as carriers of

information in a digital communication system (DCS). The results obtained are the

following:

1. We have introduced a new control technique that allows to encode any desired

sequence of information bits in just one variable of the chaotic Lorenz system

by applying small perturbations to the system trajectory. The method departs

from the same principles as the one proposed by Hayes and Grebogi in

[90, 89] but it exhibits the novel feature of controling  the system trajectory by

perturbing only the variable z, wehereas previous approaches proposed to carry

out this control by perturbing a compound magnitude that involved variables x



and z. Therefore, the encoding technique herein introduced may lead to a more

simple implementation in practice: only variable z has to be perturbed and only

one variable (the variable Z) has to be transmitted through the communication

channel.

2. Since the power of the perturbations employed to encode the information bits

is very small, the perturbed Lorenz system keeps most of the properties of the

uncontrolled one, including a certain degree of determinism. From the point

of view of communications, this determinism provides some redundancy that

can be exploited either to improve the transmission reliability or to increase

the information rate. Both improvements are based on the realization that

relatively long intervals of a chaotic signal carrying digital information can be

recovered from just a few samples. Two methods to achieve this reconstruction

have been introduced. The first reconstruction method (FRM) relies on the

availability of an storage containing samples from the signal produced by the

free running Lorenz system, whereas the second reconstruction method (SRM)

resorts to the integration of the system equations. The latter has proved to be

more precise in an ideal channel without noise, but the former is more robust

when the received signal is contaminated with Gaussian noise.

3. Both the FRM and the SRM have been applied to the problem of recovering

series of bits lost due to the effect of impulse noise on the received signal. This is

the primary source of errors in a conventional DCS and the results presented in

this work show how its effect can be significantly alleviated when the proposed

encoding technique and reconstruction methods are employed together.

4. Finally, when impulse noise or other sources of unpredictable distortion are not

a concern, the same procedures can be used to design an efficient  time division

multiplexing communication system. Since only a few samples of the chaotic

signal are necessary to reconstruct a long interval that contains several bits,

there is no need to transmit the whole waveform. Thus, several transmitters

may share the communication link by tranmitting short bursts of their encoded

chaotic signal in turns. The intended receiver only has to choose the burst

from the corresponding transmitter and apply either the FRM or the SRM to

reconstruct the whole waveform and extract the encoded bits. If N transmitters

can share the link, then the overall information rate is multiplied by N.



Regarding the future possible extensions of the first part of this work, the following

lines may be considered:

·· Analyzing the effect of different driving and diffusive connections in assemblies

of chaotic systems in order to extend the results presented in this work to more

complex situations.

l Trying to take advantage of the useful tools that group theory can provide in

order to predict the possible structures that can arise in complex systems. We

expect that the appearance of these structures can be explained in terms of the

group of symmetries that characterize the problem.

With respect to the second part, interesting extensions could be:

l To increase the information rate of the chaotic signal obtained from the

perturbed Lorenz oscillator in such a way that several bits can be encoded

in each oscillation.

l To extend the second method of reconstructing chaotic signals to improve its

robustness in noisy channels.

l To consider the variable z of the Lorenz system to be transmitted by the

communication channel instead of the variable x since the message is visible

in the signal x but not in x. In this case, the message would be masked in the

chaotic transmitted signal.



Appendix A

Chua’s Circuit.

The Chua’s circuit is a rather simple electronic circuit that became popular for

the study of chaos during the 1980’s [147,  36, 37, 39, 134], although arrays of

Chua’s circuits have also been used to model reactiondiffusion systems and autowave

propagation [153, 215, 180, 181, 136, 137, 154, 51, 155, 52, 53, 54, 55]. The Chua’s

circuit allows almost all of the dynamical behavior seen in computer simulations to

be implemented in an electronics lab and viewed on an oscilloscope. As designed

and popularized by L.O. Chua, an electronic engineering professor at the University

of California at Berkeley, and the Japanese scientist T. Matsumoto, it is an RLC

circuit that contains four linear elements (two capacitors with capacitances Cr and

CZ, one linear resistor with resistance l/G, and one inductor with inductance L) and

a nonlinear resistor, NR, called Chua’s diode [44]. This diode is responsible for the

great richness of dynamical behavior that the circuit can describe.

A schematic of this circuit is shown in Fig. A.1 where VI and VZ represent the

voltages associated to the capacitors Cr and Cz.

The Chua’s circuit can be modeled by a system of three differential equations.

The explicit form of the equations is given below

CI~ = G(Vz - vl) - g(vl)

czz = G(V, - v2) + ~~

dILL- = -vz - ILTO
dt

(A.1)
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Figure A.l: Schematic of a Chua’s  circuit.

Here r. is the internal resistance of the physical inductor and g(Vl) denotes the

intensity that circulates through the nonlinear element NR. This intensity can be

represented by the following three-segment piecewiseelinear function

s(K) = {GA + ;(Ga - G)[lK + BP1 - Iv, - q/j} (A.2)

where the slopes of the inner and outer regions are G, and Gb, respectively, and BP

and -BP denote breakpoints (see Fig. A.2).

Figure A.2: Three-segment piecewise-linear function that represents the intensity that
circulates through the nonlinear element NR as a function of the voltage VI.



where

Most of the analytical studies of the circuit have focussed on a dimensionless form

of the equations, represented by

dz
da =  4y - x - f(4)

dy-=
dr

x-y+.2

dz-=
dr -PY-72.

K a/, ILxc--,  yD-’ Zh-, TZtG7
P P P c2

and f(z) is the dimensionless form of the characteristics g(Vl):

The dimensionless parameters are defined as follows:

f(x) = {bx + ;(u - b)[lx + 11 - Ix - 111) (A.4)

A.1 Modified Chua’s Circuit.

A modification on the Chua’s oscillator has been introduced (see [203, 205]) in order

to allow a driving coupling through the nonlinear element, in such a way that the

Chua’s diode can receive an external input from another Chua’s oscillator. Thus,

the Chua’s diode is replaced by a voltage controlled current source (VCCS), namely

N&. This modified Chua’s circuit is represented in Fig. A.3, where a new input can

be introduced in the nonlinear element through node 3. The non-modified Chua’s

circuit can be recovered just by connecting node 3 with node 1. Therefore, the

modified Chua’s circuit allow to simulate more complex connections.

A schematic of this modified nonlinear element is shown in Fig. A.4, where the

nodes 1, 2 and 3 corresponds to the analogous nodes shown in Fig. A.3.
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Figure A.3: Schematic of a modified Chua’s  circuit.

Figure A.4: Schematic of a modified Chua’s diode.



Appendix B

Digital Communication Systems.

The subject of digital communications involves the transmission of information in

digital form from a source that generates the information to one or more destinations.

The principal feature of a digital communication system (DCS) is that, during a finite

time interval, it sends a waveform from a finite set of possible waveforms whereas,

in an analog communication system, the transmitted waveform is chosen from an

infinite variety of waveform shapes with theoretically infinite resolution [186].  In

a DCS, the objective at the receiver is not to reproduce a transmitted waveform

with precision; but to determine from a noise-perturbed signal which waveform from

the finite set of waveforms had been sent by the transmitter. Thus, in a DCS the

important measure of system performance is the probability of incorrectly detecting

the transmitted waveform (or, simply, the probability of error, PE) [186].  This is in

contrast to an analog communication system, where the figure of merit should be a

fidelity criterion, such as the signal-to-noise ratio (SNR), percent distortion or the

expected mean square error (MSE) between the transmitted and received waveforms.

DCSs are more robust than analog systems because signals can be regenerated at

regular intervals in the transmission line and, in this way, noise and other disturbances

are not accumulated. This is due to the nature of the transmission process. Analog

transmission is a means of transmitting analog signals without regard to their content.

This signal will become weaker (attenuate) after a certain distance. To achieve

longer distances, the analog transmission system includes amplifiers that boost the

energy in the signal. Unfortunately, the amplifier also boosts the noise components.

With amplifiers cascaded to achieve long distances, the signal becomes more and
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more distorted. Digital transmission, in contrast, is concerned with the content

of the signal. A digital signal can be transmitted only a limited distance before

attenuation endangers the integrity of the information it contains. To achieve greater

distances, repeaters are used. A repeater receives the digital signal, recovers the

original waveform and retransmits a new signal. Thus the attenuation is overcome

and the distortion is not accumulated [218].

B.1 Block Diagram of a Conventional Digital
Communication System.

Figure B.l illustrates the functional diagram and the basic elements of a digital

communication system. The source output may be either an analog signal or a

digital signal that is discrete in time and has a finite number of output characters.

In a DCS, the messages produced by the source are converted into a sequence of

binary digits. Ideally, the source output (messages) should be represented by as few

binary digits as possible. In other words, an efficient  representation of the source

output that results in little or no redundancy is pursued. The process of efficiently

converting the output of either an analog or digital source into a sequence of binary

digits is called source encoding or data compression. Examples of source encoding

are techniques such as pulse code modulation (PCM) [214] or moving pictures expert

group (MPEG) [159, 211].

IChannel

lLZiiZ+iZHC~~p

Figure B.1: Block diagram of a conventional digital communication system.



The sequence of binary digits from the source encoder, which is called information

sequence, is passed to the channel encoder. The purpose of the channel encoder is

to introduce, in a controlled manner, some redundancy in the binary information

sequence that can be used at the receiver to overcome the effects of noise and

interference encountered in the transmission of the signal through the channel. Thus,

the added redundancy serves to increase the reliability of the received data [188].

In effect, redundancy in the information sequence aids the receiver in decoding the

desired information sequence. A trivial form of encoding of the binary information

sequence is simply to repeat each binary digit m times, where m is some positive

integer. More sophisticated encoding involves taking Ic information bits at a time and

mapping each k-bit sequence into a unique n-bit sequence, called a code word. The

amount of redundancy introduced by encoding the data in this manner is measured

by the ratio n/k. The reciprocal of this ratio, namely k/n, is called the code rate.

The binary sequence at the output of the channel encoder is passed to the digital

modulator, which is the interface to the communications channel. Nearly all of the

communication channels encountered in practice are capable of transmitting electrical

signals (waveforms). So, the main purpose of the digital modulator is to map the

binary information sequence into signal waveforms. To elaborate on this point, let us

suppose that the coded information sequence is to be transmitted one bit at a time at

some uniform rate R bits/s. The digital modulator may simply map the binary digit

0 into a waveform se(t) and the binary digit 1 into a waveform s1 (t) . In this way,

each bit from the channel encoder is transmitted separately. This is called binary

modulation. Alternatively, the modulator may transmit b coded information bits at

a time by using A4 = 2b distinct waveforms si(t),  i = 0, 1, . . . , M - 1, one waveform

for each of the 2b possible b-bit sequences. This is called M-ary modubution  (M > 2).

When the channel bit rate R is fixed a new b-bit sequence enters the modulator every

b/R seconds. So, the amount of time available to transmit one of the JV waveforms

corresponding to a b-bit sequence is b times the time period in a system that uses

binary modulation.

The communication channel is the physical medium that is used to send the

signal from the transmitter to the receiver. This medium can be guided (copper

wires, optical fiber or coaxial cables) or unguided (the atmosphere or free space).

In the latter case the communication system is said to be wireless. Good examples

of wireless transmission are current mobile digital telephone systems like GSM [149].



Whatever the physical medium used for transmission of the information, the essential

feature is that the transmitted signal is corrupted in a random manner by a variety

of phenomena, such as additive thermal noise generated by electronic devices, man-

made noise (e.g., automobile ignition noise), and atmospheric noise (e.g., electrical

lightning discharges during thunderstorms).

At the receiving end of a digital communications system the digital demodulator
processes the channel-corrupted transmitted waveform and reduces the waveforms

to a sequence of numbers that represent estimates of the transmitted data symbols

(binary or M-ary). This sequence of numbers is passed to the channel decoder, which

attempts to reconstruct the original information sequence from knowledge of the code

used by the channel encoder and the redundancy contained in the received data.

A measure of how well the demodulator and the decoder perform is the frequency

with which errors occur in the decoded sequence. More precisely, the average

probability of a bit-error at the output of the decoder is a measure of the performance

of the demodulator-decoder combination. In general, the probability of error is a

function of the code characteristics, the types of waveforms used to transmit the

information over the channel, the transmitted power, the channel characteristics

(i.e., the amount of noise, the nature of the interference, etc.), and the method of

demodulation and decoding.

As a final step, when an analog output is desired, the source decoder accepts

the output sequence from the channel decoder and, from knowledge of the source

encoding method used, attempts to reconstruct the original signal. However, due

to the demodulation/decoding errors and the lack of precission in the analog to

digital (A/D) and digital to analog (D/A) conversions, the obtained signal is just an

approximation to the original source output. The difference or some function of the

difference between the original signal and the reconstructed signal is a measure of the

distortion introduced by the DCS.

B.2 Possible Problems in a Transmission Medium.

Fundamentally every communication system requires three elements, a sending or

transmitting station, a receiving station, and a transmission medium or channel to



connect the two together.

The most elementary channel is simply a pair of wires such as in telegraph or

telephone systems. Other common channels are the earth’s atmosphere, vacuum

space, or combinations of the two as in a satellite link.

With any communications system, it must be recognized that the signal that is

received will differ from the signal that is transmitted due to various transmission

impairments. For analog signals, these impairments introduce various random

modifications that degrade the signal quality. For digital signals, bit errors are

introduced: A binary 1 is transformed into a binary 0 and vice versa. The most

significant impairments are: attenuation and attenuation distortion, delay distortion

and noise.

B.2.1 Attenuation.

The strength of a signal falls off with distance over any transmission medium. For

guided media, this reduction in strength, or attenuation, is generally logarithmic and

thus is typically expressed as a constant number of decibels per unit distance. For

unguided media, attenuation is a more complex function of distance and the makeup

of the atmosphere. Attenuation introduces three considerations for the transmission

engineer. First, a received signal must have sufficient strength so that the electronic

circuitry in the receiver can detect and interpret the signal. Second, the signal must

maintain a level sufficiently higher than noise to be received without error. Third,

attenuation is an increasing function of frequency.

The first and second problems are dealt with by attention to signal strength and

the use of amplifiers or repeaters. For a point-to-point link, the signal strength of

the transmitter must be strong enough to be received intelligibly, but not so strong

as to overload the circuitry of the transmitter, which would cause a distorted signal

to be generated. Beyond a certain distance, the attenuation is unacceptably great,

and repeaters or amplifiers are used to boost the signal from time to time. These

problems are more complex for multipoint lines where the distance from transmitter

to receiver is variable.

The third problem is particularly noticeable for analog signals. Because the



attenuation varies as a function of frequency, the received signal is distorted,

intelligibility. To overcome this problem, techniques are available for equalizing

attenuation across a band of frequencies. This is commonly done for voice-grade

telephone lines by using loading coils that change the electrical properties of the line;

the result is to smooth out attenuation effects. Another approach is to use amplifiers

that amplify high frequencies more than lower frequencies.

Attenuation distortion is much less of a problem with digital signals since the

strength of a digital signal falls off rapidly with frequency and most of the content is

concentrated near the fundamental frequency or bit rate of the signal.

B.2.2 Delay Distortion.

Delay distortion is a phenomenon peculiar to guided transmission media. The

distortion is caused by the fact that the velocity of propagation of a signal through

a guided medium varies with frequency. For a bandlimited signal, the velocity tends

to be highest near the center  frequency and fall off toward the two edges of the band.

Thus various frequency components of a signal will arrive at the receiver at different

times.

This effect is referred to as delay distortion, since the received signal is distorted

due to variable delay in its components. Delay distortion is particularly critical for

digital data. Consider that a sequence of bits is being transmitted, using either analog

or digital signals. Because of delay distortion, some of the signal components of one

bit position will spill over into other bit positions, causing intersymbol interference
[186],  which is a major limitation to maximum bit rate over a transmission control.

Equalizing techniques can also be used for delay distortion [186].

B.2.3 Noise.

For any data transmission event, the received signal will consist of the transmitted

signal, modified by the various distortions imposed by the transmission system, plus

additional unwanted signals that are inserted somewhere between trasmission and



reception. The latter, undesired signals are referred to as noise. It is noise that is

the major limiting factor in communications system performance.

Noise may be divided into four categories [62]: Thermal noise, Intermodulation

noise, Crosstalk and Impulse noise.

Thermal Noise is due to thermal agitation of electrons in a conductor. It is present

in all electronic devices and transmission media and is a function of temperature.

Thermal noise is uniformly distributed across the frequency spectrum and hence is

often referred to as white noise. Thermal noise cannot be eliminated and therefore

places an upper bound on communications system performance.

When signals at different frequencies share the same transmission medium, the

result may be intermodulation noise. The effect of intermodulation noise is to produce

signals at a frequency that is the sum or difference of the two original frequencies

or multiples of those frequencies. For example, the mixing of signals at frequencies

fi and f2 might produce energy at the frequency fi + f2. This derived signal could

interfere with an intended signal at the frequency fi + fz.

Intermodulation noise is produced when there is some nonlinearity in the

transmitter, receiver, or intervening transmission system. Normally, these

components behave as linear systems; that is, the output is equal to the input times a

constant. In a nonlinear system, the output is a more complex function of the input.

Such nonlinearity can be caused by component malfunction or the use of excessive

signal strength. It is under these circumstances that the sum and difference terms

occur.

Crosstalk has been experienced by anyone who, while using the telephone, has been

able to hear another conversation; it is unwnated coupling between signal paths. It

can occur by electrical coupling between nearby twisted pair or, rarely, coax cable

lines carrying multiple signals. Crosstalk can also occur when unwanted signals are

picked up by microwave antennas; although highly directional, microwave energy does

spread during propagation. Typically, crosstalk is of the same order of magnitude as,

or less than, thermal noise.

All of the types of noise discussed so far have reasonably predictable and

reasonably constant magnitudes. Thus it is possible to engineer a transmission



system to cope with them. Impulse noise, however, is noncontinuous, consisting of

irregular pulses or noise spikes of short duration and of relatively high amplitude. It is

generated from a variety of causes, including external electromagnetic disturbances,

such as lightning, and faults and flaws in the communications system.

Impulse noise is generally only a minor annoyance for analog data. For example,

voice transmission may be corrupted by short clicks and crackles with no loss of

intelligibility. IIowever, impulse noise is the primary source of error in digital data

communication. For example, a sharp spike of energy of 0.001 s duration would not

destroy any voice data, but would wash out about 5 bits of data being transmitted

at 4800 bps.



Appendix C

Multiplexing.

Multiplexing refers to a variety of techniques used to make more efficient use of

transmission facility. In many cases, the capacity of a transmission facility exceeds

the requirements for the transfer of data between two devices. That capacity can

be shared among multiple transmitters by multiplexing a number of signals onto the

same medium. In this case, the actual transmission path is referred to as a circuit

or link, and the portion of capacity dedicated to each pair of transmitter/receivers is

referred to as a channel.

Transmission facilities are, by and large, expensive. It is often the case that two

communicating stations will not utilize the full capacity of a data link. For efficiency,

it should be possible to share that capacity. The generic term for such sharing is

multiplexing.

It is instructive to distinguish among several types of multiuser communication

systems. One type is a multiple access system in which a large number of users

share a common communication channel to transmit information to a receiver. Such

a system is depicted in Fig. C.1.. The common channel may be the up-link in a

satellite communication system, or a cable to which are connected a set of terminals

that access a central computer, or some frequency band in the radio spectrum that is

used by multiple users to communicate with a radio receiver. For example, in a mobile

cellular communication system, the users are the mobile trasmitters  in any particular

cell of the system and the receiver resides in the base station of the particular cell.

125



Transmitter 1 >_._  _ ~_

Transmitter 2 I
Channel 1Receiver ~

Transmitter K
174

_ -I

Figure C.l: A multiple access system.

A second type of multiuser communication system is a broadcast network in which

a single transmitter sends information to multiple receivers as depicted in Fig. C.2.

Examples of broadcast systems include the common radio and TV broadcast systems,

as well as the down-links in a satellite system.

0Satellite

/

Ground stations

Figure C.2: A broadcast network.

The multiple access and broadcast networks are probably the most common

multiuser communication systems. A third type of multiuser system is a store-and-

forward network, as depicted in Fig. C.3.
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Figure C.3: A store-and-forward communication network with satellite relays.

Yet a fourth type is the two-way communication system shown in Fig. C.4.

1
Transmitter

User 1

Receiver

c

Channel

--I T r a n s m i t t e r  /

Figure C.4: A two-way communication channel.

In general, there are several different ways in which multiple users can send

information through the communication channel to the receiver. One simple method

is to subdivide the available channel bandwidth into a number, say N, of frequency

nonoverlapping subchannels, as shown in Fig. C.5, and to assign a subchannel to each

user upon request by the users. This method is generally called frequency-division

multiple access (FDMA), and is commonly used in wireline channels to accommodate

multiple users for voice and data transmission.
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Figure C.5: Subdivisions of the channel into nonoverlapping frequency bands.

Another method for creating multiple subchannels for multiple access is to

subdivide the duration Tf, called the frame duration, into, say, N nonoverlapping

subintervals, each of duration Tf/N. Then each user who wishes to transmit

information is assigned to a particular time slot within each frame. This multiple

access method is called time-division multiple access (TDMA) and it is frequently

used in data and digital voice transmission.



Glossary.

l Attractor: The bounded region or set of points of phase space (with

zero volume) towards which orbits/trajectories originating from nearby points

(basins) are attracted during long-time evolution in the case of dissipative

systems. Point attractors (such as stable focus, centre, stable node), limit

cycles, torus and chaotic (strange) attractors all are examples.

l Bifurcation: Sudden/abrupt significant changes in the set of fixed or periodic

points or other sets of dynamic interest at critical control parameters values

when the parameter is varied.

Let us suppose the following system of differential equations

Li + f(z, A) = 0, ( C . 1 )

where  z E %“, X E ~3 is a bifurcation parameter, and f : !R2” x $2 + $t2”  is

a smooth (Cm) mapping defined near (0,O). We also assume that there is a

trivial solution, so that f(0, X) E 0.

Generally there are two types of bifurcation:

(a) Steady-state bifurcation, when an eigenvalue of (&)0,x passes through 0.

(b) Hopf b$urcation, when a pair of conjugate complex eigenvalues of (#),,A

crosses the imaginary axis with nonzero speed at fwi, w # 0.

Generically these eigenvalues are simple. In case (a) subject to suitable

nondegeneracy conditions, there will be a branch of steady-state solutions

bifurcating from the origin. In case (b) a branch of periodic solution, of period

near 27r/w,  will bifurcate.

l Chaos: Complicated and aperiodic motions which are highly sensitively

dependent upon initial conditions in deterministic nonlinear systems.
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Correspondingly, in the phase space two nearby chaotic trajectories diverge

exponentially, though still confined to a bounded domain (in the case of

dissipative systems).

o Diffeomorphism: A Ck-diffeomorphism f : Ad + N is a mapping f which

is one-to-one, onto, and has the property that both f and f-l are k-times

differentiable.

l Dynamical system: Any set of equations giving the time evolution of the state

of a system from a knowledge of its previous history. Examples are Maxwell’s

equations, the Navier-Stokes equations, and Newton’s equations for the motion

of a particle with suitably specified forces. A common setting is a system of k

first-order autonomous ordinary differential equations

k = F(x), (C-2)

where x = (z(i), ~3~))  . . . ,d”))  denotes k state components, considered as a

vector in k-dimensional phase space, F(x) = (J’(l)  (x), Fc2) (x) , . . . , F(“) (x)) is
a k-dimensional vector function of x, and x denotes the time derivative dx/dt.

l Eigenvector: An eigenvector 21 of an n x n matrix A is a nonzero vector which

satisfies Av = A u for some X E C. X is the eigenvalue of ZJ.

l Global: This term is applied to properties which cannot be analyzed in

arbitrarily small neighborhoods of a single point.

0 Local: A property is local if it can be analyzed in an arbitrarily small

neighborhood of a given point.

0 Lyapunov exponents: Numbers providing a quantitative average measure

of the divergence of nearby trajectories in phase space. All negative exponents

represent regular and periodic orbits, while at least one positive exponent signals

the presence of chaotic motion.

In particular, for a k-dimensional system of first-order ordinary differential

equations

x = F(x),  (C.3)

if we consider the infinitesimally displaced orbit x(t) + 6x(t) and the tangent

vector y(t) = &x(t)/6x(O),  in terms of which we have

jr = DF(x(t))y. (C.4)



Thus, the Lyapunov exponents are then given by

Manifold: An n-dimensional manifold M c ?RN is a set for which each

x E .A4 has a neighborhood U for which there is a smooth invertible mapping

(diffeomorphism) q5 : 32” + U(n 5 N).

Neighborhood: A neighborhood of a point x is a set U which contains x in

its interior.

Phase diagram: A plot of the different types of dynamical behavior as a

function of two or more control parameters.

Phase space/Phase portrait: The abstract space of the dynamical variables

is the phase space in which the state point moves along the phase trajectory

constituting the phase portrait.

Submanifold: A submanifold M
manifold.

of a manifold N is a subset of n/ which is a
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